scholarly journals Preclinical Safety and Efficacy of Human CD34+ Cells Transduced With Lentiviral Vector for the Treatment of Wiskott-Aldrich Syndrome

2013 ◽  
Vol 21 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Samantha Scaramuzza ◽  
Luca Biasco ◽  
Anna Ripamonti ◽  
Maria C Castiello ◽  
Mariana Loperfido ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3279-3279
Author(s):  
Samantha Scaramuzza ◽  
Sara Trifari ◽  
Francesco Marangoni ◽  
Silvana Martino ◽  
Ayse Metin ◽  
...  

Abstract Wiskott-Aldrich Syndrome (WAS) is an X-linked primary immunodeficiency characterized by eczema, recurrent infections, severe hemorrhages and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical sibling donors is a resolutive treatment, but it is available only for a minority of patients. Therapy based on the transplant of genetically correct autologous stem cells could represent a valid alternative approach. We investigated the efficacy and the safety of WAS gene transfer using HIV-based lentiviral vector encoding for WAS cDNA under the control of an autologous promoter (1.6 kb). T cells obtained from WAS patients showed normal level of WAS expression after lentiviral transduction. Transduced T cells showed a correction in TCR-driven proliferation and IL-2 production. Furthermore, a selective growth advantage of transduced T cells was observed in long-term in vitro cultures. Studies in T cell clones generated from transduced WAS CD4+ T cells revealed that 1–2 vector copies were necessary and sufficient to correct T cells function. CD34+ cells, isolated from mobilized peripheral blood and bone marrow of healthy donors, were transduced using WASP or GFP-encoding lentiviral vectors. Cells were cultured in the presence of different cytokines to investigate if WAS gene transfer could have any effect on short and long-term differentiation (CFU-C, LTC-IC and B/NK assays). Transduction resulted in a comparable number of CFU-C and LTC-IC colonies and normal B and NK cells differentiation with respect to untransduced cells. Furthermore, transduction of CD34+ cells isolated from the bone marrow of a WAS patient was performed under optimized culture conditions. Lentiviral gene transfer led to restoration of WASP expression in differentiated cells with copy number ranging from 1 to 5 copies per cell. In conclusion, our data demonstrate that the WAS promoter/cDNA-containing lentiviral vector can efficiently transduce and restore WASP expression in CD34+ cells and T cells from WAS patients. Experiments in the Rag2−/−/γchain- murine model are ongoing to test the efficacy and safety of the WASP transduced CD34+ cells. Together, our studies provide a preclinical basis for the implementation of a gene therapy trial for WAS patients.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3326-3335 ◽  
Author(s):  
Emmanuel Ravet ◽  
Damien Reynaud ◽  
Monique Titeux ◽  
Brigitte Izac ◽  
Serge Fichelson ◽  
...  

Abstract The transcription factor TAL1 has major functions during embryonic hematopoiesis and in adult erythropoiesis and megakaryocytopoiesis. These functions rely on different TAL1 structural domains that are responsible for dimerization, transactivation, and DNA binding. Previous work, most often done in mice, has shown that some TAL1 functions do not require DNA binding. To study the role of TAL1 and the relevance of the TAL1 DNA-binding domain in human erythropoiesis, we developed an approach that allows an efficient enforced wild-type or mutant TAL1 protein expression in human hematopoietic CD34+ cells using a lentiviral vector. Differentiation capacities of the transduced cells were studied in a culture system that distinguishes early and late erythroid development. Results indicate that enforced TAL1 expression enhances long-term culture initiating cell (LTC-IC) potential and erythroid differentiation of human CD34+ cells as shown by increased βglobin and porphobilinogen deaminase (PBGD) gene expressions and erythroid colony-forming units (CFU-Es), erythroid burst-forming units (BFU-Es), and glycophorin A-positive (GPA+) cell productions. Enforced expression of a TAL1 protein deleted of its DNA-binding domain (named ΔbTAL1) mimicked most TAL1 effects except for the LTC-IC enhancement, the down-regulation of the CD34 surface marker, and the GPA+ cell production. These results provide the first functional indications of DNA-binding-dependent and -independent roles of TAL1 in human erythropoiesis. (Blood. 2004;103:3326-3335)


2013 ◽  
Vol 4 ◽  
Author(s):  
Scaramuzza Samantha ◽  
Ferrua Francesca ◽  
Castiello Maria ◽  
Giannelli Stefania ◽  
Biasco Luca ◽  
...  

2016 ◽  
Vol 44 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Naoya Uchida ◽  
Rashidah Green ◽  
Josiah Ballantine ◽  
Luke P. Skala ◽  
Matthew M. Hsieh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document