The early Miocene onset of a ventilated circulation regime in the Arctic Ocean

Nature ◽  
2007 ◽  
Vol 447 (7147) ◽  
pp. 986-990 ◽  
Author(s):  
Martin Jakobsson ◽  
Jan Backman ◽  
Bert Rudels ◽  
Jonas Nycander ◽  
Martin Frank ◽  
...  
arktos ◽  
2021 ◽  
Author(s):  
Akil Hossain ◽  
Gregor Knorr ◽  
Wilfried Jokat ◽  
Gerrit Lohmann

AbstractThe tectonic opening of the Fram Strait (FS) was critical to the water exchange between the Atlantic Ocean and the Arctic Ocean, and caused the transition from a restricted to a ventilated Arctic Ocean during early Miocene. If and how the water exchange between the Arctic Ocean and the North Atlantic influenced the global current system is still disputed. We apply a fully coupled atmosphere–ocean–sea-ice model to investigate stratification and ocean circulation in the Arctic Ocean in response to the opening of the FS during early-to-middle Miocene. Progressive widening of the FS gateway in our simulation causes a moderate warming, while salinity conditions in the Nordic Seas remain similar. On the contrary, with increasing FS width, Arctic temperatures remain unchanged and salinity changes appear to steadily become stronger. For a sill depth of ~ 1500 m, we achieve ventilation of the Arctic Ocean due to enhanced import of saline Atlantic water through an FS width of ~ 105 km. Moreover, at this width and depth, we detect a modern-like three-layer stratification in the Arctic Ocean. The exchange flow through FS is characterized by vertical separation of a low-salinity cold outflow from the Arctic Ocean confined to a thin upper layer, an intermediate saline inflow from the Atlantic Ocean below, and a cold bottom Arctic outflow. Using a significantly shallower and narrower FS during the early Miocene, our study suggests that the ventilation mechanisms and stratification in the Arctic Ocean are comparable to the present-day characteristics.


2021 ◽  
Author(s):  
Akil Hossain ◽  
Gregor Knorr ◽  
Wilfried Jokat ◽  
Gerrit Lohmann

<p>The tectonic opening of the Fram Strait (FS) was critical to the water exchange between the Atlantic Ocean and the Arctic Ocean, and caused the transition from a restricted to a ventilated Arctic Ocean during early Miocene. If and how the water exchange between the Arctic Ocean and the North Atlantic influenced the global current system is still disputed. We apply a fully coupled atmosphere-ocean-sea-ice model to investigate stratification and ocean circulation in the Arctic Ocean in response to the opening of the FS during early to middle Miocene. Progressive widening of the FS gateway in our simulation causes a moderate warming, while salinity conditions in the Nordic Seas remain similar. On the contrary, with increasing FS width Arctic temperatures remain unchanged and salinity changes appear to steadily become stronger. For a sill depth of ~1500 m, we achieve ventilation of the Arctic Ocean due to enhanced import of saline Atlantic water through a FS width of ~105 km. Moreover, at this width and depth, we detect a modern-like three-layer stratification in the Arctic Ocean. The exchange flow through FS is characterized by vertical separation of a low salinity cold outflow from the Arctic Ocean confined to a thin upper layer, an intermediate saline inflow from the Atlantic Ocean below and a cold bottom Arctic outflow. Using a significantly shallower and narrower FS during the early Miocene, our study suggests that the ventilation mechanisms and stratification in the Arctic Ocean are comparable to the present-day characteristics.</p>


2012 ◽  
Vol 31 (1) ◽  
pp. 10859 ◽  
Author(s):  
Bijoy Thompson ◽  
Martin Jakobsson ◽  
Johan Nilsson ◽  
Jonas Nycander ◽  
Kristofer Döös

Data Series ◽  
10.3133/ds862 ◽  
2014 ◽  
Author(s):  
Lisa L. Robbins ◽  
Jonathan Wynn ◽  
Paul O. Knorr ◽  
Bogdan Onac ◽  
John T. Lisle ◽  
...  

2020 ◽  
Vol 29 (1) ◽  
pp. 138-154
Author(s):  
R.V. Smirnov ◽  
O.V. Zaitseva ◽  
A.A. Vedenin

A new species of Pogonophora obtained from one station at a depth of 25 m from near the Dikson Island in the Kara Sea is described. Galathealinum karaense sp. nov. is one of the largest pogonophorans, the first known representative of the rare genus Galathealinum Kirkegaard, 1956 in the Eurasian part of the Arctic Ocean and a highly unusual finding for the desalted shallow of the Yenisey Gulf. Several characters occurring in the new species are rare or unique among the congeners: under-developed, hardly discernible frills on the tube segments, extremely thin felted fibres in the external layer of the tube, and very faintly separated papillae in the anterior part of the trunk. Morphological characters useful in distinguishing species within the genus Galathealinum are defined and summarised in a table. Diagnosis of the genus Galathealinum is emended and supplemented by new characters. Additionally, three taxonomic keys are provided to the species of Galathealinum and to the known species of the Arctic pogonophorans using either animals or their empty tubes only, with the brief zoogeographical information on each Arctic species.


Sign in / Sign up

Export Citation Format

Share Document