scholarly journals An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes

2018 ◽  
Vol 10 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Huilin Li ◽  
Hong Hanh Nguyen ◽  
Rachel R. Ogorzalek Loo ◽  
Iain D. G. Campuzano ◽  
Joseph A. Loo
2022 ◽  
Vol 51 (1) ◽  
Author(s):  
Kelly R. Karch ◽  
Dalton T. Snyder ◽  
Sophie R. Harvey ◽  
Vicki H. Wysocki

Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


The Analyst ◽  
2018 ◽  
Vol 143 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Kyle L. Fort ◽  
Michiel van de Waterbeemd ◽  
Dmitriy Boll ◽  
Maria Reinhardt-Szyba ◽  
Mikhail E. Belov ◽  
...  

Native mass spectrometry can provide insight into the structure of macromolecular biological systems.


1987 ◽  
Vol 78 (2-3) ◽  
pp. 109-113 ◽  
Author(s):  
Y. Wada ◽  
E. lkkala ◽  
K. Imai ◽  
T. Matsuo ◽  
H. Matsuda ◽  
...  

Author(s):  
Elisabetta Boeri Erba ◽  
Luca Signor ◽  
Mizar F. Oliva ◽  
Fabienne Hans ◽  
Carlo Petosa

Sign in / Sign up

Export Citation Format

Share Document