scholarly journals Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Laure Botella ◽  
Julien Vaubourgeix ◽  
Jonathan Livny ◽  
Dirk Schnappinger
2021 ◽  
Author(s):  
Emmanuel Saridakis ◽  
Rishi Vishwakarma ◽  
Josephine Lai-Kee-Him ◽  
Kevin Martin ◽  
Isabelle Simon ◽  
...  

The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [MtbRho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. Here, we address these unusual features by solving the cryo-EM structure of MtbRho at 3.3 Å resolution, providing a new framework for future antibiotic development. The MtbRho hexamer is poised into a pre-catalytic, open-ringed state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of MtbRho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency.


Cell ◽  
1993 ◽  
Vol 75 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Mikhail Kashlev ◽  
Evgeny Nudler ◽  
Alex Goldfarb ◽  
Terry White ◽  
Elizabeth Kutter

1999 ◽  
Vol 112 (19) ◽  
pp. 3259-3268 ◽  
Author(s):  
V. Sirri ◽  
P. Roussel ◽  
D. Hernandez-Verdun

The transcription termination factor TTF-1 exerts two functions in ribosomal gene (rDNA) transcription: facilitating initiation and mediating termination of transcription. Using HeLa cells, we show that TTF-1 protein is colocalized with the active transcription machinery in the nucleolus and also with the inactive machinery present in certain mitotic nucleolar organizer regions (NORs) when rDNA transcription is repressed. We also show that TTF-1 is specifically phosphorylated during mitosis in a manner dependent on the cdc2-cyclin B kinase pathway and on an okadaic acid-sensitive phosphatase. Interestingly, the mitotically phosphorylated form of TTF-1 appearing at the G(2)/M transition phase was more easily solubilized than was the interphase form. This indicates that the chromatin-binding affinity of TTF-1 appears to be different in mitotic chromosomes compared to the interphase nucleolus. Correlated with this, the other DNA-binding factor, UBF, which interferes with chromatin conformation in the rDNA promoter, was more strongly bound to rDNA during mitosis than at interphase. The reorganization of the mitotic rDNA promoter might be induced by phosphorylation of certain components of the rDNA transcription machinery and participate in silencing of rDNA during mitosis.


Sign in / Sign up

Export Citation Format

Share Document