The future of noninvasive neonatal brain assessment: the measure of cerebral blood flow by diffuse correlation spectroscopy in combination with near-infrared spectroscopy oximetry

Author(s):  
Marco Ferrari ◽  
Valentina Quaresima
2011 ◽  
Vol 32 (3) ◽  
pp. 481-488 ◽  
Author(s):  
Nadège Roche-Labarbe ◽  
Angela Fenoglio ◽  
Alpna Aggarwal ◽  
Mathieu Dehaes ◽  
Stefan A Carp ◽  
...  

Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen consumption in the premature newborn brain. We combined quantitative frequency-domain near-infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO2) and CBV with diffusion correlation spectroscopy measures of cerebral blood flow index (BFix) to determine the relationship between these measures, gestational age at birth (GA), and chronological age. We followed 56 neonates of various GA once a week during their hospital stay. We provide absolute values of SO2 and CBV, relative values of BFix, and relative cerebral metabolic rate of oxygen (rCMRO2) as a function of postmenstrual age (PMA) and chronological age for four GA groups. SO2 correlates with chronological age ( r=−0.54, P value 0.001) but not with PMA ( r=−0.07), whereas BFix and rCMRO2 correlate better with PMA ( r=0.37 and 0.43, respectively, P value 0.001). Relative CMRO2 during the first month of life is lower when GA is lower. Blood flow index and rCMRO2 are more accurate biomarkers of the brain development than SO2 in the premature newborns.


2019 ◽  
Vol 127 (5) ◽  
pp. 1328-1337 ◽  
Author(s):  
Valentina Quaresima ◽  
Parisa Farzam ◽  
Pamela Anderson ◽  
Parya Y. Farzam ◽  
Daniel Wiese ◽  
...  

In the last 20 yr, near-infrared diffuse correlation spectroscopy (DCS) has been developed for providing a noninvasive estimate of microvascular blood flow (BF) as a BF index (BFi) in the human skin, muscle, breast, brain, and other tissue types. In this study, we proposed a new motion correction algorithm for DCS-derived BFi able to remove motion artifacts during cycling exercise. We tested this algorithm on DCS data collected during cycling exercise and demonstrated that DCS can be used to quantify muscle BFi during dynamic high-intensity exercise. In addition, we measured tissue regional oxygen metabolic rate (MRO2i) by combining frequency-domain multidistance near-infrared spectroscopy (FDNIRS) oximetry with DCS flow measures. Recreationally active subjects ( n = 12; 31 ± 8 yr, 183 ± 4 cm, 79 ± 10 kg) pedaled at 80–100 revolutions/min until volitional fatigue with a work rate increase of 30 W every 4 min. Exercise intensity was normalized in each subject to the cycling power peak (Wpeak). Both rectus femoris BFi and MRO2i increased from 15% up to 75% Wpeak and then plateaued to the end of the exercise. During the recovery at 30 W cycling power, BFi remained almost constant, whereas MRO2i started to decrease. The BFi/MRO2i plateau was associated with the rising of the lactate concentration, indicating the progressive involvement of the anaerobic metabolism. These findings further highlight the utility of DCS and FDNIRS oximetry as effective, reproducible, and noninvasive techniques to assess muscle BFi and MRO2i in real time during a dynamic exercise such as cycling. NEW & NOTEWORTHY To the best of our knowledge, this study is the first to demonstrate that diffuse correlation spectroscopy in combination with frequency-domain near-infrared spectroscopy can monitor human quadriceps microvascular blood flow and oxygen metabolism with high temporal resolution during a cycling exercise. The optically measured parameters confirm the expected relationship between blood flow, muscle oxidative metabolism, and lactate production during exercise.


2006 ◽  
Vol 100 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Derek W. Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.


Sign in / Sign up

Export Citation Format

Share Document