scholarly journals Sensitive GATA1 mutation screening reliably identifies neonates with Down syndrome at risk for myeloid leukemia

Leukemia ◽  
2021 ◽  
Author(s):  
Bianca F. Goemans ◽  
Sanne Noort ◽  
Marjolein Blink ◽  
Yong-Dong Wang ◽  
Susan T. C. J. Peters ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1725-1725
Author(s):  
Katarina Reinhardt ◽  
Alford Kate ◽  
Katarina Bohmer ◽  
Paresh Vyas ◽  
Reinhardt Dirk

Abstract Abstract 1725 Children up to the age of 5 years with trisomy 21 (T21, Down Syndrome) are at a 400-fold excess risk of developing myeloid leukemia (ML-DS). ∼5% of newborns with T21 develop a transient leukemia (TL). The megakaryoblastic phenotype by morphology and immunophenotyping is similar in both leukemias. Mutations in hematopoietic transcription factor GATA1 gene leading to expression of N-terminal truncated protein (GATA1s) have been detected in almost all TL and ML-DS patients and is the diagnostic genetic hallmark of these diseases. Aims: Fast and accurate identification is required to:confirm the diagnosis of TL or ML-DSconfirm the diagnosis of a GATA1s positive leukemia in children with no or little stigmata of Down Syndrome (T21 mosaic)monitor minimal residual disease (MRD)determine the pattern of GATA1 mutation in TL and ML-DS. Patients: Here we report the largest cohort of children (n=229) with TL (n=129) and ML-DS (n=100). The blast percentage of blasts were significant different (TL 43±3% vs. ML-DS 29 ±2%, p<0.03). Methods: The GATA1 mutation screening have been performed in two laboratories, the central reference of the AML-BFM Study Group (Hannover, Germany; TL n=90, ML-DS n=63) and at the Weatherall Institute of Molecular Medicine (Oxford, UK; TL n=39, ML-DS n=37). The AML-BFM Lab conducted direct sequencing. If this failed, sequencing was repeated with sorted blasts. If the result remained negative, subcloning of the blasts was performed (21 out of 137 patients). The Oxford lab screened all samples by WAVE and direct sequencing. The lower limit of blasts which allowed for successful detection of a GATA1 mutation was 2%. Results: GATA1 mutations were identified in 125 out of 129 (96%) newborns with TL and in 97/100 (97%) children with ML-DS. In 99% of cases GATA1 mutations were detected in exon 2; only in 2 cases were exon 3 mutations identified. GATA1 mutation were identified in 13 children with Down mosaic and acute leukemia (TL n=8; ML-DS n=5). The detection of GATA1 prevents intensive chemotherapy in newborns with TL and allowed reduced intensity chemotherapy to be administered in infants with ML-DS. The mutations are diverse: deletions (37%), point mutations (24%), duplications (23%) and insertions (16%). With exception of substitutions, which were uniquely detected in TL (n=2; 1.6%), no differences between TL and ML-DS have been observed. Mutations were predicted to result in a stop codon(66%), affect splicing (16%), produce a frameshift that produced a subsequent stop codon (7%), or alter the start codon (3%). No differences in these predicted outcomes was present between TL and DS-ML. Summary: Rapid detection of GATA1 mutations is possible in almost all children with T1 and mosaic T21 who develop TL or ML-DS with these approaches, even in samples where the blast count is as low as 2%. Mutation detection and conformation of the correct diagnosis is critical to ensure appropriate therapy is administered and to allow patient specific MRD monitoring. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2007 ◽  
Vol 22 (7) ◽  
pp. 1428-1430 ◽  
Author(s):  
H Hasle ◽  
J Abrahamsson ◽  
M Arola ◽  
A Karow ◽  
A O'Marcaigh ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 888-888 ◽  
Author(s):  
Katarina Reinhardt ◽  
C. Michel Zwaan ◽  
Michael Dworzak ◽  
Jasmijn D.E. de Rooij ◽  
Gertjan Kaspers ◽  
...  

Abstract Abstract 888 Introduction: Pediatric acute megakaryoblastic leukemia (AMKL) occurred in 6.6% (84/1271) of the children enrolled to the AML-BFM98 and 2004 studies. Despite a similar phenotype in morphology and immunophenotype, AMKL shows a heterogenous cytogenetic distribution (normal karyotype 23%, complex karyotype 21%, t(1;22) 9%; MLL-rearrangement 8%; monosomy 7 5%, trisomy 8 5%; other aberrations 29%). Mutations of the hematopoietic transcription factor GATA1 have been identified in almost all children suffering myeloid leukemia of Down syndrome (ML-DS). In addition, GATA1 mutations (GATA1mut) could be identified in children with trisomy 21 mosaic. Here, AMKL without evidence of Down syndrome or Down syndrome mosaic were analyzed for mutations in exon 1, 2 or 3 of the transcription factor GATA1. Patients: Seventy-one children from the AML-BFM Study group (n=51; 2000–2011), the Netherlands (n=10), France (n=3) and Scandinavia (n=7) were included. Within the AML-BFM Group the 51 analyzed patients showed similar characteristics compared to the total cohort of 84 children with AMKL of the AML-BFM 98 and 2004 studies. AMKL was confirmed according to the WHO classification by genetics (t(1;22)); morphology and immunophenotyping. Table 1a) summarizes the patientxs characteristics and b) the cytogenetic results. Methods: For GATA1 mutation screening genomic DNA was amplified by PCR reaction for exon 1, 2, and 3. PCR amplicons were analyzed by direct sequencing or following denaturing high-performance liquid chromatography (WAVE). Results: Seven different GATA1 mutations were detected in 8 children (11.1%; table 2). In all GATA1mut leukemia, a trisomy 21 within the leukemic blasts could be detected. Seven out of these 8 children and all other 64 AMKL patients have been treated with intensive chemotherapy regimens according the study group protocols. The results are given in table 2. All achieved continuous complete remission (CCR; 0.4 to 4.2 years). In one newborn with typical morphology and immunophenotype a GATA1mut associated transient leukemia was supposed. The child achieved CCR (follow-up 6 years). In total, allogeneic stem cell transplantation in 1st CR was performed in 6 children with AMKL (GATA1mut leukemia n=1). Conclusions: GATA1 mutations occurred in 11% of children with AMKL without any symptoms or evidence of trisomy 21 or trisomy 21 mosaic. GATA1 mutations are associated with a trisomy 21 within the leukemic blasts. Although non-response occurred, prognosis was significant better compared to other AMKL. Therefore, analysis of GATA1 mutation in infant AMKL is strongly recommended. Whether treatment reduction similar to ML-DS Down syndrome is feasible needs to be confirmed. Disclosures: No relevant conflicts of interest to declare.


Children ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 52
Author(s):  
Zachary Prudowsky ◽  
HyoJeong Han ◽  
Alexandra Stevens

Transient abnormal myelopoiesis (TAM) is a common and potentially fatal neonatal complication of newborn babies with Down syndrome (DS). Children born with mosaic DS are also at risk of developing TAM. However, due to their variable phenotypes, early identification of patients with mosaic DS may be difficult; thus, early diagnosis of TAM is just as challenging. In this report, we describe a case of a phenotypically normal newborn who presented with concerns for neonatal leukemia. The diagnosis of mosaic DS and TAM was confirmed with abnormal GATA1 mutation testing, highlighting the importance of early GATA1 mutation testing in newborn leukemia with high suspicion for TAM.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2539-2539
Author(s):  
Alexandra Kolenova ◽  
Katarina Reinhardt ◽  
Michaela Nathrath ◽  
Claudia Rossig ◽  
Arend von Stackelberg ◽  
...  

Abstract Abstract 2539 Introduction: Transient leukemia (TL) occurs in 5 to 10% of newborns with Down syndrome (DS). In almost all cases it resolves spontaneously within 3 months, but 20–25% of the children develop myeloid leukemia (ML-DS) until the age of 4 years. TL and ML-DS can occur also in children without any clinical signs of Down syndrome, but with constitutional trisomy 21 due to mosaicism. It can be difficult to diagnose TL or ML-DS in these children and the treatment strategies have not been defined. Patients/Material: Between 1/2002 and 7/2011, 15 newborns and infants were diagnosed with DS mosaic. Nine of them presented with TL and 8 children suffered from ML-DS; 2 of them with a history of TL (table 1). In children without any stigmata the special morphology and immunophenotype of blasts triggered the screening for GATA1 mutation and trisomy 21 mosaic. Diagnostic work-up was performed according to standard guidelines: morphology, immunophenotyping (IP), cytogenetics and FISH (trisomy 21), molecular genetics (GATA 1 mutation screening). Screening of GATA1 mutations was done with direct sequencing of PCR product (Exon1, Exon2, and Exon3). For monitoring of GATA1 mutant clone qPCR have been used with patient specific TaqMan probes and primers. Mosaic was detected by cytogenetics or FISH in bone marrow, blood and/or fibroblasts. Results: All newborns with TL achieved complete remission (CR). Due to clinical symptoms caused by the leukemic blasts, in 3 children low-dose cytarabine was applied. One patient died due to cardiovascular failure. In all patients GATA 1 mutation was confirmed. Minimal residual disease by qPCR (mutation-specific probes) or immunophenotyping (IP) revealed negativity in 3 out of 3 children monitored (follow-up 2 to 10.1 yrs). Two children with (unknown) trisomy 21 mosaic were diagnosed as acute megakaryoblastic leukemia (AMKL) and treated according the high risk arm of the AML-BFM 2004 including allogeneic stem cell transplantation (one child), GATA1 mutation was identified retrospectively. Both children are alive in CR. Six children with ML-DS were initially treated according the AML-BFM protocol. After ML-DS was confirmed, therapy was continued with the intensity reduced schedule according to the ML-DS 2006 protocol. All children are still in CR (follow-up 1.5 to 6.7 years, median 2.4 yrs). This was confirmed by MRD-monitoring, which achieved negativity after two treatment elements (qPCR <10−4 n=3; IP <10−3 n=6). In one child a distinct refractory myeloid leukemia population (GATA1mut negative/trisomy 21 negative) arose after the 1st induction. Due to treatment refractory, allogenic stem cell transplantation was applied. Conclusions: GATA1 mutated leukemia has to be excluded in all young children with AMKL (<5years old) to prevent overtreatment. Treatment with reduced intensity protocol like ML-DS 2006 seems to be effective and sufficient in children with trisomy 21 mosaic and GATA1 mutated ML-DS. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 42 (03) ◽  
pp. 301-304
Author(s):  
Mohanaraj Ramachandran ◽  
Prasanth Srinivasan ◽  
Jagdish Prasad Meena ◽  
Aditya Kumar Gupta ◽  
Tanya Prasad ◽  
...  

AbstractTransient abnormal myelopoiesis (TAM) is a unique entity seen in children with Down syndrome (DS) with 10 to 20% risk of developing myeloid leukemia in the first 5 years of life. We report a 2 months old male infant with DS detected to have hyperleukocytosis on routine preoperative workup for cyanotic congenital heart disease. Peripheral blood and bone marrow aspiration showed blasts, and next-generation sequencing detected a novel GATA1 mutation, and a diagnosis of TAM was confirmed in this child. This mutation has not been reported in TAM in the literature earlier to the best of our knowledge.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1138-1138
Author(s):  
Ishnoor Sidhu ◽  
Sonali P. Barwe ◽  
E. Anders Kolb ◽  
Anilkumar Gopalakrishnapillai

Abstract Background Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s together with trisomy 21 is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately thirty percent of these cases progress into DS-ML by acquisition of additional somatic mutations in a step-wise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21 induced pluripotent stem cells (iPSCs) leading to the production of N-terminally truncated short form of GATA1 (GATA1s) (Barwe et al., 2021). In this study, we introduced co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM, and evaluated its effect on hematopoietic differentiation. Methods Two different iPSC lines with trisomy 21 with or without GATA1 mutation as described in Barwe et al., 2021, were used. CRISPR/Cas9 gene editing was performed to introduce STAG2 mutation to generate a knockout of STAG2. Hematopoietic differentiation of these iPSC lines was performed using STEMdiff Differentiation kit. ProteinSimple Wes system was used for western blot analysis. Multi-dimensional flow cytometry was used for immunophenotypic analysis of megakaryoblasts cultured in lineage expansion media for 5 days. Multi-lineage colony forming potential was assessed by Methocult colony forming assay using day 10 hematopoietic stem progenitor cells (HSPCs). Results Hematopoietic differentiation of GATA1 and STAG2 double mutants in two independent trisomy 21 iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein (Fig. 1A). GATA1s expressing HSPCs collected on day 12 post differentiation showed reduced erythroid (CD71+CD235+) and increased megakaryoid (CD34+CD41+ within CD41+ compartment) and myeloid (CD18+CD45+) population compared to disomy 21 HSPCs with wild-type GATA1, consistent with our previous study (Fig. 2B). STAG2 knockout HSPCs showed higher erythroid population (P=0.033 and 0.016 in T21-1S and T21-2S respectively) and reduced myeloid population while it had no significant effect on the megakaryoid population in both iPSC lines. The GATA1s/STAG2 knockout HSPCs showed reduced erythroid, but higher megakaryoid and myeloid population compared to wild-type HSPCs. Strikingly, the immature megakaryoid population was significantly higher in the double mutant HSPCs compared to single mutant alone in both iPSC lines (P=0.005 and 0.004 for T21-1GS and T21-2GS respectively), indicating that the STAG2knockout co-operated with GATA1s for increasing megakaryoid population. The trisomy 21 iPSC line with wild-type GATA1 developed CFU-GEMM (colony-forming unit granulocyte erythroid macrophage megakaryocyte), CFU-GM (CUF granulocyte-macrophage) and BFU-E (burst-forming unit erythroid) colonies in Methocult. GATA1 mutation, unlike STAG2 mutation, inhibited the formation of CUF-GEMM and BFU-E colonies. The number of CFU-GM colonies in T21-2GS was significantly reduced compared to T21-2G (Fig. 1C, p=0.002). Lineage expansion and immunophenotyping of these HSPCs in megakaryocyte-specific media showed that these cells expressed markers closely resembling DS-ML immunophenotype. Of note, the myeloid markers, CD13 and CD11b are the only two markers expressed on majority of DS-ML blasts compared to TAM blasts (Karandikar et al., 2001) (Yumura-Yagi et al., 1992). The percentage of CD13 and CD11b expressing cells was higher in megakaryoblasts expanded from iPSC lines with STAG2 GATA1 double mutant (Fig. 1D). The number of cells expressing CD117, a stem cell marker shown recently to be involved in DS-ML progression, were highest in T21-1GS and T21-2GS lines when compared to their respective isogenic family of GATA1 mutant lines. Conclusion GATA1s and STAG2 knockout co-operated to increase the megakaryoid population and the percentage of cells expressing DS-ML markers. We have developed a model system representing DS-ML, which can be used for understanding the individual and synergistic contribution of these gene mutations in disease initiation and progression. Figure 1 Figure 1. Disclosures Barwe: Prelude Therapeutics: Research Funding. Gopalakrishnapillai: Geron: Research Funding.


2019 ◽  
Author(s):  
O Alejo-Valle ◽  
M Labuhn ◽  
E Emmrich ◽  
M Ng ◽  
D Heckl ◽  
...  

2020 ◽  
Author(s):  
Nigel Armstrong ◽  
Ruben GW Quek ◽  
Steve Ryder ◽  
Janine Ross ◽  
Titas Buksnys ◽  
...  

Background: Ongoing clinical trials are investigating poly(ADP-ribose) polymerase (PARP) inhibitors to target the DNA damage repair (DDR) pathway in prostate cancer. DDR mutation screening will guide treatment strategy and assess eligibility for clinical trials. Materials & methods: This systematic review estimated the rate of DDR mutation testing or genetic counseling among men with or at risk of prostate cancer. Results: From 6856 records, one study fulfilled the inclusion criteria and described men undiagnosed with prostate cancer with a family history of BRCA1/2 mutation who received DDR mutation testing. Conclusion: With only one study included in this first systematic review of DDR mutation testing or genetic counseling in men with or at risk of prostate cancer, more research is warranted.


Sign in / Sign up

Export Citation Format

Share Document