scholarly journals Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids

2020 ◽  
Vol 15 (1) ◽  
pp. 168-182
Author(s):  
Laura Villanueva ◽  
F. A. Bastiaan von Meijenfeldt ◽  
Alexander B. Westbye ◽  
Subhash Yadav ◽  
Ellen C. Hopmans ◽  
...  

AbstractArchaea synthesize membranes of isoprenoid lipids that are ether-linked to glycerol-1-phosphate (G1P), while Bacteria/Eukarya produce membranes consisting of fatty acids ester-bound to glycerol-3-phosphate (G3P). This dichotomy in membrane lipid composition (i.e., the ‘lipid divide’) is believed to have arisen after the Last Universal Common Ancestor (LUCA). A leading hypothesis is that LUCA possessed a heterochiral ‘mixed archaeal/bacterial membrane’. However, no natural microbial representatives supporting this scenario have been shown to exist today. Here, we demonstrate that bacteria of the Fibrobacteres–Chlorobi–Bacteroidetes (FCB) group superphylum encode a putative archaeal pathway for ether-bound isoprenoid membrane lipids in addition to the bacterial fatty acid membrane pathway. Key genes were expressed in the environment and their recombinant expression in Escherichia coli resulted in the formation of a ‘mixed archaeal/bacterial membrane’. Genomic evidence and biochemical assays suggest that the archaeal-like lipids of members of the FCB group could possess either a G1P or G3P stereochemistry. Our results support the existence of ‘mixed membranes’ in natural environments and their stability over a long period in evolutionary history, thereby bridging a once-thought fundamental divide in biology.

2018 ◽  
Author(s):  
Laura Villanueva ◽  
F.A. Bastiaan von Meijenfeldt ◽  
Alexander B. Westbye ◽  
Ellen C. Hopmans ◽  
Bas E. Dutilh ◽  
...  

Archaea synthesize membranes of isoprenoid lipids that are ether-linked to glycerol, while Bacteria/Eukarya produce membranes consisting of ester-bound fatty acids. This dichotomy in membrane lipid composition or ‘lipid divide’ is believed to have arisen after the Last Universal Common Ancestor (LUCA). A leading hypothesis is that LUCA possessed a ‘mixed heterochiral archaeal/bacterial membrane’, however no natural microbial representatives supporting this scenario have been shown to exist today. Here, we demonstrate that bacteria of the Fibrobacteres-Chlorobi-Bacteroidetes (FCB) group superphylum and related candidate phyla encode a complete pathway for archaeal membrane lipid biosynthesis in addition to the bacterial fatty acid membrane pathway. Key genes were expressed in the environment and their recombinant expression inE. coliresulted in the formation of a ‘mixed archaeal/bacterial membrane’. Our results support the existence of ‘mixed membranes’ in natural environments and their stability over large evolutionary timescales, thereby bridging a once-thought fundamental divide in biology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nika Pende ◽  
Adrià Sogues ◽  
Daniela Megrian ◽  
Anna Sartori-Rupp ◽  
Patrick England ◽  
...  

AbstractMost archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


2021 ◽  
Vol 83 (2) ◽  
pp. 76-79
Author(s):  
Cristina Sousa

The origin of life is one of the most interesting and challenging questions in biology. This article discusses relevant contemporary theories and hypotheses about the origin of life, recent scientific evidence supporting them, and the main contributions of several scientists of different nationalities and specialties in different disciplines. Also discussed are several ideas about the characteristics of the most recent common ancestor, also called the “last universal common ancestor” (or LUCA), including cellular status (unicellular or community) and homogeneity level.


Sign in / Sign up

Export Citation Format

Share Document