scholarly journals Ganoderic acid A is the effective ingredient of Ganoderma triterpenes in retarding renal cyst development in polycystic kidney disease

2020 ◽  
Vol 41 (6) ◽  
pp. 782-790 ◽  
Author(s):  
Jia Meng ◽  
Sai-zhen Wang ◽  
Jin-zhao He ◽  
Shuai Zhu ◽  
Bo-yue Huang ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Zhiwei Qiu ◽  
Jinzhao He ◽  
Guangying Shao ◽  
Jiaqi Hu ◽  
Xiaowei Li ◽  
...  

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disease characterized by progressive enlargement of fluid-filled cysts derived from renal tubular epithelial cells, which has become the fourth leading cause of end-stage renal diseases. Currently, treatment options for ADPKD remain limited. The purpose of this study was to discover an effective therapeutic drug for ADPKD. With virtual screening, Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model and kidney-specific Pkd1 knockout mouse (PKD) model, we identified obacunone as a candidate compound for ADPKD drug discovery from a natural antioxidant compound library. In vitro experiments showed that obacunone significantly inhibited cyst formation and expansion of MDCK cysts and embryonic kidney cysts in a dose-dependent manner. In vivo, obacunone treatment significantly reduced the renal cyst development in PKD mice. Western blot and morphological analysis revealed that obacunone served as a NRF2 activator in ADPKD, which suppressed lipid peroxidation by up-regulating GPX4 and finally restrained excessive cell proliferation by down-regulating mTOR and MAPK signaling pathways. Experimental data demonstrated obacunone as an effective renal cyst inhibitor for ADPKD, indicating that obacunone might be developed into a therapeutic drug for ADPKD treatment.


2015 ◽  
Vol 29 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Weiling Wang ◽  
Fei Li ◽  
Yi Sun ◽  
Lei Lei ◽  
Hong Zhou ◽  
...  

2011 ◽  
Vol 108 (44) ◽  
pp. 18067-18072 ◽  
Author(s):  
E. E. Olsan ◽  
S. Mukherjee ◽  
B. Wulkersdorfer ◽  
J. M. Shillingford ◽  
A. J. Giovannone ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Li-Fang Chou ◽  
Ya-Lien Cheng ◽  
Chun-Yih Hsieh ◽  
Chan-Yu Lin ◽  
Huang-Yu Yang ◽  
...  

Autophagy impairment has been demonstrated in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) and could be a new target of treatment. Trehalose is a natural, nonreducing disaccharide that has been shown to enhance autophagy. Therefore, we investigated whether trehalose treatment reduces renal cyst formation in a Pkd1-hypomorphic mouse model. Pkd1 miRNA transgenic (Pkd1 miR Tg) mice and wild-type littermates were given drinking water supplemented with 2% trehalose from postnatal day 35 to postnatal day 91. The control groups received pure water or 2% sucrose for the control of hyperosmolarity. The effect on kidney weights, cystic indices, renal function, cell proliferation, and autophagic activities was determined. We found that Pkd1 miR Tg mice had a significantly lower renal mRNA expression of autophagy-related genes, including atg5, atg12, ulk1, beclin1, and p62, compared with wild-type control mice. Furthermore, immunohistochemical analysis showed that cystic lining cells had strong positive staining for the p62 protein, indicating impaired degradation of the protein by the autophagy-lysosome pathway. However, trehalose treatment did not improve reduced autophagy activities, nor did it reduce relative kidney weights, plasma blood urea nitrogen levels, or cystatin C levels in Pkd1 miR Tg mice. Histomorphological analysis revealed no significant differences in the renal cyst index, fibrosis score, or proliferative score among trehalose-, sucrose-, and water-treated groups. Our results demonstrate that adding trehalose to drinking water does not modulate autophagy activities and renal cystogenesis in Pkd1-deficient mice, suggesting that an oral supplement of trehalose may not affect the progression of ADPKD.


Sign in / Sign up

Export Citation Format

Share Document