Enhancement of the glass transition temperature of poly(methyl methacrylate) by salt

2018 ◽  
Vol 50 (9) ◽  
pp. 857-863 ◽  
Author(s):  
Asae Ito ◽  
Panitha Phulkerd ◽  
Viknasvarri Ayerdurai ◽  
Mizuki Soga ◽  
Antoine Courtoux ◽  
...  
2018 ◽  
Vol 46 (3) ◽  
pp. 117-121 ◽  
Author(s):  
Asae Ito ◽  
Viknasvarri Ayerdurai ◽  
Azusa Miyagawa ◽  
Akikazu Matsumoto ◽  
Haruki Okada ◽  
...  

2006 ◽  
Vol 128 (4) ◽  
pp. 559-563 ◽  
Author(s):  
G. Palm ◽  
R. B. Dupaix ◽  
J. Castro

The mechanical behavior of amorphous thermoplastics, such as poly(methyl methacrylate) (PMMA), strongly depends on temperature and strain rate. Understanding these dependencies is critical for many polymer processing applications and, in particular, for those occurring near the glass transition temperature, such as hot embossing. In this study, the large strain mechanical behavior of PMMA is investigated using uniaxial compression tests at varying temperatures and strain rates. In this study we capture the temperature and rate of deformation dependence of PMMA, and results correlate well to previous experimental work found in the literature for similar temperatures and strain rates. A three-dimensional constitutive model previously used to describe the mechanical behavior of another amorphous polymer, poly(ethylene terephthalate)-glycol (PETG), is applied to model the observed behavior of PMMA. A comparison with the experimental results reveals that the model is able to successfully capture the observed stress-strain behavior of PMMA, including the initial elastic modulus, flow stress, initial strain hardening, and final dramatic strain hardening behavior in uniaxial compression near the glass transition temperature.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4822
Author(s):  
Szabolcs Pásztor ◽  
Bálint Becsei ◽  
Györgyi Szarka ◽  
Yi Thomann ◽  
Ralf Thomann ◽  
...  

The glass transition temperature (Tg) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox–Flory relationship between Tg and the average molecular weight between crosslinking points (Mc), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two Tgs were found for the conetworks by DSC. Fox–Flory type dependence between Tg and Mc of the PMMA component (Tg = Tg,∞ − K/Mc) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5–20 nm, but the correlation between Tg and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the Tg of PMMA depend exclusively on the Mc in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.


Sign in / Sign up

Export Citation Format

Share Document