scholarly journals A putative bHLH transcription factor is a candidate gene for male sterile 32, a locus affecting pollen and tapetum development in tomato

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoyan Liu ◽  
Mengxia Yang ◽  
Xiaolin Liu ◽  
Kai Wei ◽  
Xue Cao ◽  
...  
2021 ◽  
Author(s):  
Liu Xiaowei ◽  
Yue Yujing ◽  
Gu Zicheng ◽  
Huang Qing ◽  
Pan Zijin ◽  
...  

Abstract Maize male sterile mutant 40 (ms40) was obtained from the progeny of ethyl methanesulfonate (EMS) treated inbred line RP125. Genetic analysis showed that it was controlled by a single recessive nuclear gene. Cytological observation of anthers revealed that abnormal cuticles and disappearing of Ubisch bodies presented in ms40. Moreover, its tapetum exhibited delayed degradation and blocked the formation of abnormal microspore. Using map-based cloning, ms40 locus was located in a 282-kb interval on chromosome 4, five annotated genes were predicted within this region. PCR-based sequencing detected a single nonsynonymous SNP (G>A) which changed glycine (G) to arginine (A) in the seventh exon of Zm00001d053895, while no difference was found for the other four genes between ms40 and RP125. Zm00001d053895 encodes the bHLH transcription factor bHLH51 which protein was located at nuclear. Phylogenetic analysis presented that bHLH51 had the highest homology with Sb04g001650, a tapetum degeneration retardation (TDR) bHLH transcription factor in Sorghum bicolor. Co-expression analysis exposed a total of 1192 genes coexpressed with Zm00001d053895 in maize, 647 out of 1192 were anther-specific genes. In summary, these findings are conducive to the marker-assisted selection of ms40 in hybrid breeding and laid a foundation for further studies on the mechanisms of male fertility.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Liu ◽  
Minghu Zhang ◽  
Xiaomei Jiang ◽  
Hui Li ◽  
Zhenjiao Jia ◽  
...  

Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.


Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kaijie Zheng ◽  
Xutong Wang ◽  
Yating Wang ◽  
Shucai Wang

Abstract Background Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. Results Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. Conclusion These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Abrouk ◽  
Naveenkumar Athiyannan ◽  
Thomas Müller ◽  
Yveline Pailles ◽  
Christoph Stritt ◽  
...  

AbstractThe cloning of agriculturally important genes is often complicated by haplotype variation across crop cultivars. Access to pan-genome information greatly facilitates the assessment of structural variations and rapid candidate gene identification. Here, we identified the red glume 1 (Rg-B1) gene using association genetics and haplotype analyses in ten reference grade wheat genomes. Glume color is an important trait to characterize wheat cultivars. Red glumes are frequent among Central European spelt, a dominant wheat subspecies in Europe before the 20th century. We used genotyping-by-sequencing to characterize a global diversity panel of 267 spelt accessions, which provided evidence for two independent introductions of spelt into Europe. A single region at the Rg-B1 locus on chromosome 1BS was associated with glume color in the diversity panel. Haplotype comparisons across ten high-quality wheat genomes revealed a MYB transcription factor as candidate gene. We found extensive haplotype variation across the ten cultivars, with a particular group of MYB alleles that was conserved in red glume wheat cultivars. Genetic mapping and transient infiltration experiments allowed us to validate this particular MYB transcription factor variants. Our study demonstrates the value of multiple high-quality genomes to rapidly resolve copy number and haplotype variations in regions controlling agriculturally important traits.


2013 ◽  
Vol 54 (3) ◽  
pp. 398-405 ◽  
Author(s):  
Kyoko Ohashi-Ito ◽  
Manami Matsukawa ◽  
Hiroo Fukuda

Sign in / Sign up

Export Citation Format

Share Document