scholarly journals Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Vincent Rincheval ◽  
Mickael Lelek ◽  
Elyanne Gault ◽  
Camille Bouillier ◽  
Delphine Sitterlin ◽  
...  
mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Marie Galloux ◽  
Jennifer Risso-Ballester ◽  
Charles-Adrien Richard ◽  
Jenna Fix ◽  
Marie-Anne Rameix-Welti ◽  
...  

ABSTRACT Infection of host cells by the respiratory syncytial virus (RSV) is characterized by the formation of spherical cytoplasmic inclusion bodies (IBs). These structures, which concentrate all the proteins of the polymerase complex as well as some cellular proteins, were initially considered aggresomes formed by viral dead-end products. However, recent studies revealed that IBs are viral factories where viral RNA synthesis, i.e., replication and transcription, occurs. The analysis of IBs by electron microscopy revealed that they are membrane-less structures, and accumulated data on their structure, organization, and kinetics of formation revealed that IBs share the characteristics of cellular organelles, such as P-bodies or stress granules, suggesting that their morphogenesis depends on a liquid-liquid phase separation mechanism. It was previously shown that expression of the RSV nucleoprotein N and phosphoprotein P of the polymerase complex is sufficient to induce the formation of pseudo-IBs. Here, using a series of truncated P proteins, we identified the domains of P required for IB formation and show that the oligomeric state of N, provided it can interact with RNA, is critical for their morphogenesis. We also show that pseudo-IBs can form in vitro when recombinant N and P proteins are mixed. Finally, using fluorescence recovery after photobleaching approaches, we reveal that in cellula and in vitro IBs are liquid organelles. Our results strongly support the liquid-liquid phase separation nature of IBs and pave the way for further characterization of their dynamics. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, elderly, and immunocompromised people. No vaccine or efficient antiviral treatment is available against this virus. The replication and transcription steps of the viral genome are appealing mechanisms to target for the development of new antiviral strategies. These activities take place within cytoplasmic inclusion bodies (IBs) that assemble during infection. Although expression of both the viral nucleoprotein (N) and phosphoprotein (P) allows induction of the formation of these IBs, the mechanism sustaining their assembly remains poorly characterized. Here, we identified key elements of N and P required for the scaffolding of IBs and managed for the first time to reconstitute RSV pseudo-IBs in vitro by coincubating recombinant N and P proteins. Our results provide strong evidence that the biogenesis of RSV IBs occurs through liquid-liquid phase transition mediated by N-P interactions.


Virology ◽  
1967 ◽  
Vol 31 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Masanori Tajima ◽  
Takeshi Ushijima ◽  
Shigeru Kishi ◽  
Junji Nakamura

2012 ◽  
Vol 87 (3) ◽  
pp. 1333-1347 ◽  
Author(s):  
Jens Fricke ◽  
Lily Y. Koo ◽  
Charles R. Brown ◽  
Peter L. Collins

ABSTRACTRespiratory syncytial virus (RSV) forms cytoplasmic inclusion bodies (IBs) that are thought to be sites of nucleocapsid accumulation and viral RNA synthesis. The present study found that IBs also were the sites of major sequestration of two proteins involved in cellular signaling pathways. These are phosphorylated p38 mitogen-activated protein kinase (MAPK) (p38-P), a key regulator of cellular inflammatory and stress responses, and O-linkedN-acetylglucosamine (OGN) transferase (OGT), an enzyme that catalyzes the posttranslational addition of OGN to protein targets to regulate cellular processes, including signal transduction, transcription, translation, and the stress response. The virus-induced sequestration of p38-P in IBs resulted in a substantial reduction in the accumulation of a downstream signaling substrate, MAPK-activated protein kinase 2 (MK2). Sequestration of OGT in IBs was associated with suppression of stress granule (SG) formation. Thus, while the RSV IBs are thought to play an essential role in viral replication, the present results show that they also play a role in suppressing the cellular response to viral infection. The sequestration of p38-P and OGT in IBs appeared to be reversible: oxidative stress resulting from arsenite treatment transformed large IBs into a scattering of smaller bodies, suggestive of partial disassembly, and this was associated with MK2 phosphorylation and OGN addition. Unexpectedly, the RSV M2-1 protein was found to localize in SGs that formed during oxidative stress. This protein was previously shown to be a viral transcription elongation factor, and the present findings provide the first evidence of possible involvement in SG activities during RSV infection.


2021 ◽  
Author(s):  
Krist Helen Antunes ◽  
Renato T. Stein ◽  
Caroline Franceschina ◽  
Emanuelle F. da Silva ◽  
Deise N. de Freitas ◽  
...  

2008 ◽  
Vol 6 (5) ◽  
pp. 394-401 ◽  
Author(s):  
Anne H. Rowley ◽  
Susan C. Baker ◽  
Jan M. Orenstein ◽  
Stanford T. Shulman

Sign in / Sign up

Export Citation Format

Share Document