scholarly journals Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Gregg ◽  
P. Kristensen ◽  
A. Rubano ◽  
S. Golowich ◽  
L. Marrucci ◽  
...  

Abstract Light carries both orbital angular momentum (OAM) and spin angular momentum (SAM), related to wavefront rotation and polarization, respectively. These are usually approximately independent quantities, but they become coupled by light’s spin-orbit interaction (SOI) in certain exotic geometries and at the nanoscale. Here we reveal a manifestation of strong SOI in fibers engineered at the micro-scale and supporting the only known example of propagating light modes with non-integer mean OAM. This enables propagation of a record number (24) of states in a single optical fiber with low cross-talk (purity > 93%), even as tens-of-meters long fibers are bent, twisted or otherwise handled, as fibers are practically deployed. In addition to enabling the investigation of novel SOI effects, these light states represent the first ensemble with which mode count can be potentially arbitrarily scaled to satisfy the exponentially growing demands of high-performance data centers and supercomputers, or telecommunications network nodes.

Optica ◽  
2021 ◽  
Author(s):  
Maxim Yavorsky ◽  
Dmitriy Vikulin ◽  
C. Alexeyev ◽  
Vladimir Belotelov

1975 ◽  
Vol 11 (5) ◽  
pp. 2053-2055 ◽  
Author(s):  
H. K. Fung ◽  
S. J. Williamson ◽  
C. S. Ting ◽  
M. P. Sarachik

Fibers ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 34
Author(s):  
Nikolai I. Petrov

Polarization is measured very often to study the interaction of light and matter, so the description of the polarization of light beams is of both practical and fundamental interest. This review discusses the polarization properties of structured light in multimode graded-index optical fibers, with an emphasis on the recent advances in the area of spin-orbit interactions. The basic physical principles and properties of twisted light propagating in a graded index fiber are described: rotation of the polarization plane, Laguerre–Gauss vector beams with polarization-orbital angular momentum entanglement, splitting of degenerate modes due to spin-orbit interaction, depolarization of light beams, Berry phase and 2D and 3D degrees of polarizations, etc. Special attention is paid to analytical methods for solving the Maxwell equations of a three-component field using perturbation analysis and quantum mechanical approaches. Vector and tensor polarization degrees for the description of strongly focused light beams and their geometrical interpretation are also discussed.


Sign in / Sign up

Export Citation Format

Share Document