long fibers
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 43)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Ali Rakhsh Mahpour ◽  
Monica Ardanuy ◽  
Heura Ventura ◽  
Joan Ramon Rosell ◽  
Josep Claramunt

The use of plant fibers as a reinforcement for fragile matrices could be an option to improve the sustainability of the construction materials. These reinforcements can be in different forms as short fibers, long fibers or woven or nonwoven fabrics. The mechanical performance of the composites is significantly related to the adhesion between the matrix and the fibers. In the case of nonwoven reinforcement, to get good adhesion, the penetration of the paste is a key point. That is why this study addresses the relationship between rheology, penetration through the nonwoven fabrics and the mechanical properties of various lime pastes with different contents of water and metakaolin (MK). The effect of the binder’s grinding is also evaluated. The results indicate that MK pastes with higher w/b ratios penetrate better into nonwovens, Grinding has a negative effect on penetrability despite improving the mechanical properties of the pastes.


2021 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Silviu Nastac ◽  
Petronela Nechita ◽  
Carmen Debeleac ◽  
Cristian Simionescu ◽  
Mihai Seciureanu

Lignocelluloses residues from the post-harvest crop are receiving great scientific attention nowadays. Generally, the composite materials based on lignocelluloses waste present low density and weight, and better insulation properties compared with those petroleum-based. This study presents the results of experimental investigations regarding soundproofing capabilities for a composite material based on expanded perlite (EP) and natural polymers matrix (starch) reinforced with rapeseed stalks waste. The preparation of light-weight samples of composites was performed at room temperature through a mechanical mixing process of EP with starch polymers and rapeseed residues until optimum moisture content composition was obtained. Rapeseed stalks long fibers were avoided through the preliminary dry grinding procedure, and the composite was air-dried at room temperature for 48 h. Four samples of composites with different ratio of EP and rapeseed waste were considered. The evaluation of sample sound insulation characteristics was performed using the transfer-matrix method based on a four-microphone acoustic impedance tube. The paper concludes that the proposed composite provides comparative sound insulation capabilities to actual materials, with few particular aspects presented within the paper. Thus, these new materials are promising as a viable alternative to the actual large-scale utilization solutions in soundproofing applications.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12386
Author(s):  
Elizaveta Fofanova ◽  
Tatiana D. Mayorova ◽  
Elena E. Voronezhskaya

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.


2021 ◽  
Vol 28 (12) ◽  
Author(s):  
K. M. Faridul Hasan ◽  
Péter György Horváth ◽  
Zsófia Kóczán ◽  
Duong Hung Anh Le ◽  
Miklós Bak ◽  
...  

AbstractThis study investigated about the developments of insulation panels from multilayered coir long and short fiber reinforced phenol formaldehyde polymeric (PF) resin. The lengths of coir long fibers (CLF) were within 3 mm, whereas the short fibers (CSF) ranged from 0.1 mm to 1.25 mm. Four composite panels of 360, 680, 800, and 1000 kg/m3 densities were developed by employing hot pressing technology. The thermal conductivity, microstructural, mechanical, and physical properties of the composite panels were investigated. Perceived thermal conductivity values ranged within 0.046280 (0.000494) to 0.062400 (0.001146) Wm‒1 k‒1of the composites demonstrating superior insulation properties. Moreover, the current study also found that mechanical and thermal properties showed improvement with the increase of density. Low-density fiberboards had the lowest performances compared to high-density composite panels, with the exception of the 1000 kg/m3 density, in which fiber agglomeration occurred. Furthermore, all the developed composite panels display superior potentiality for use as effective insulation materials. The FTIR (Fourier transform infrared spectroscopy) analysis also shows an efficient bonding between the cellulosic coir materials and PF resin. The overall characteristics of the composite panels, especially medium fiberboard, show prominent potential for industrial production units by fulfilling the consumer requirements.


2021 ◽  
Vol 17 ◽  
pp. 2621-2628
Author(s):  
Tobias Klein ◽  
Franka V Gruschwitz ◽  
Maren T Kuchenbrod ◽  
Ivo Nischang ◽  
Stephanie Hoeppener ◽  
...  

Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications.


2021 ◽  
Author(s):  
Elizaveta Fofanova ◽  
Tatiana Mayorova ◽  
Elena Voronezhskaya

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.


2021 ◽  
Author(s):  
Mitsugu Hasegawa ◽  
Hirotaka Sakaue

Abstract Engineered surfaces and coatings can passively manipulate flow over a bluff-body without significant retrofitting and are of great technological interest for a broad range of applications in the engineering field. A microfiber coating with a hair-like structure is developed and studied as a passive drag reduction method for flow over a cylinder that features both attached and separated flow. The impact of the microfiber coating on drag is experimentally investigated at a Reynolds number of 6.1 × 104 based on the cylinder diameter. Microfiber coatings of various lengths between 1.1% and 8.0% of the cylinder diameter are fabricated using flocking technology and applied to various positions on the cylinder surface between the leading and trailing edges. It is shown that the microfiber length and location are both influential parameters in drag reduction. Two types of drag reduction can be seen depending on the location of the microfiber coating: (1) Drag is reduced significantly if the microfiber coating is applied before flow separates over the cylinder (2) Drag is reduced moderately if the microfiber coating is applied after the point of flow separation on the cylinder. The former case’s best performance is achieved with a microfiber length of less than 1.8% of the cylinder diameter. The latter case shows better performance with relatively long fibers, where the microfiber’s length is greater than 3.3% of the cylinder diameter.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2492
Author(s):  
Po-Wei Huang ◽  
Hsin-Shu Peng ◽  
Sheng-Jye Hwang ◽  
Chao-Tsai Huang

In this study, fiber breaking behavior, fiber orientation, length variation, and changes in melt flow ability of long glass fiber reinforced polypropylene (L-FRP) composites under different mold cavity geometry, melt fill path, and plasticization parameters were investigated. The matrix material used was polypropylene and the reinforcement fibers were 25 mm long. An ultra-long-fiber composite injection molding machine (with a three-stage plunger and injection mechanism design) was used with different mold cavity geometry and plasticization parameters. Different screw speeds were used to explore the changes in fiber length and to provide a reference for setting fiber length and parameter combinations. Flow-length specimen molds with different specimen thickness, melt fill path, and gate design were used to observe the effect of plasticizing properties on the flow ability of the L-FRP composite materials. The experimental results showed that the use of an injection molding machine with a mechanism that reduced the amount of fiber breakage was advantageous. It was also found that an increase in screw speed increased fiber breakage, and 25 mm long fibers were shortened by an average of 50% (to 10 mm). Long fibers were more resistant to melt filling than short fibers. In addition, the thickness of the specimen and the gate design were also found to affect the filling process. The rounded angle gate and thick wall product decreased the flow resistance and assisted the flow ability and fiber distribution of the L-FRP injection molding.


Author(s):  
Mr. Saurav Sariyal

The need for eco-friendly materials is increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offer various advantages over conventional materials such as environment friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and possess good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements. This project aim is to development of a new hybrid natural composite made of Sisal and Kenaf for automobile application. Static analysis of specimen will be perform utilizing in ANSYS 19 software to determine force reaction for specified displacement with both composite materials along with stress concentration effect with deformation. Results and end will be drawn by looking at systematic and experimental esteems.


Sign in / Sign up

Export Citation Format

Share Document