scholarly journals Observing collisions beyond the secular approximation limit

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Junyang Ma ◽  
Haisu Zhang ◽  
Bruno Lavorel ◽  
Franck Billard ◽  
Edouard Hertz ◽  
...  

AbstractQuantum coherence plays an essential role in diverse natural phenomena and technological applications. The unavoidable coupling of the quantum system to an uncontrolled environment incurs dissipation that is often described using the secular approximation. Here we probe the limit of this approximation in the rotational relaxation of molecules due to thermal collisions by using the laser-kicked molecular rotor as a model system. Specifically, rotational coherences in N2O gas (diluted in He) are created by two successive nonresonant short and intense laser pulses and probed by studying the change of amplitude of the rotational alignment echo with the gas density. By interrogating the system at the early stage of its collisional relaxation, we observe a significant variation of the dissipative influence of collisions with the time of appearance of the echo, featuring a decoherence process that is well reproduced by the nonsecular quantum master equation for modeling molecular collisions.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elmina Kabouraki ◽  
Vasileia Melissinaki ◽  
Amit Yadav ◽  
Andrius Melninkaitis ◽  
Konstantina Tourlouki ◽  
...  

Abstract Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic–inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs.


2012 ◽  
Vol 137 (4) ◽  
pp. 044112 ◽  
Author(s):  
Mohsen Vafaee ◽  
Firoozeh Sami ◽  
Babak Shokri ◽  
Behnaz Buzari ◽  
Hassan Sabzyan

2012 ◽  
Vol 31 (1) ◽  
pp. 23-28 ◽  
Author(s):  
V.V. Korobkin ◽  
M.Yu. Romanovskiy ◽  
V.A. Trofimov ◽  
O.B. Shiryaev

AbstractA new concept of generating tight bunches of electrons accelerated to high energies is proposed. The electrons are born via ionization of a low-density neutral gas by laser radiation, and the concept is based on the electrons acceleration in traps arising within the pattern of interference of several relativistically intense laser pulses with amplitude fronts tilted relative to their phase fronts. The traps move with the speed of light and (1) collect electrons; (2) compress them to extremely high density in all dimensions, forming electron bunches; and (3) accelerate the resulting bunches to energies of at least several GeV per electron. The simulations of bunch formation employ the Newton equation with the corresponding Lorentz force.


2013 ◽  
Vol 20 (9) ◽  
pp. 093109 ◽  
Author(s):  
L. G. Huang ◽  
M. Bussmann ◽  
T. Kluge ◽  
A. L. Lei ◽  
W. Yu ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 013102 ◽  
Author(s):  
Kamalesh Jana ◽  
David R. Blackman ◽  
Moniruzzaman Shaikh ◽  
Amit D. Lad ◽  
Deep Sarkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document