scholarly journals Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Enqing Hou ◽  
Yiqi Luo ◽  
Yuanwen Kuang ◽  
Chengrong Chen ◽  
Xiankai Lu ◽  
...  
2019 ◽  
Vol 28 (5) ◽  
pp. 690-724 ◽  
Author(s):  
Kai Yue ◽  
Yan Peng ◽  
Dario A. Fornara ◽  
Koenraad Van Meerbeek ◽  
Lars Vesterdal ◽  
...  

2019 ◽  
Vol 650 ◽  
pp. 1-9 ◽  
Author(s):  
Chunbo Huang ◽  
Zhixiang Zhou ◽  
Changhui Peng ◽  
Mingjun Teng ◽  
Pengcheng Wang

2018 ◽  
Vol 115 (24) ◽  
pp. 6237-6242 ◽  
Author(s):  
Shihong Jia ◽  
Xugao Wang ◽  
Zuoqiang Yuan ◽  
Fei Lin ◽  
Ji Ye ◽  
...  

The theory of “top-down” ecological regulation predicts that herbivory suppresses plant abundance, biomass, and survival but increases diversity through the disproportionate consumption of dominant species, which inhibits competitive exclusion. To date, these outcomes have been clear in aquatic ecosystems but not on land. We explicate this discrepancy using a meta-analysis of experimental results from 123 native animal exclusions in natural terrestrial ecosystems (623 pairwise comparisons). Consistent with top-down predictions, we found that herbivores significantly reduced plant abundance, biomass, survival, and reproduction (allP< 0.01) and increased species evenness but not richness (P= 0.06 andP= 0.59, respectively). However, when examining patterns in the strength of top-down effects, with few exceptions, we were unable to detect significantly different effect sizes among biomes, based on local site characteristics (climate or productivity) or study characteristics (study duration or exclosure size). The positive effects on diversity were only significant in studies excluding large animals or located in temperate grasslands. The results demonstrate that top-down regulation by herbivores is a pervasive process shaping terrestrial plant communities at the global scale, but its strength is highly site specific and not predicted by basic site conditions. We suggest that including herbivore densities as a covariate in future exclosure studies will facilitate the discovery of unresolved macroecology trends in the strength of herbivore–plant interactions.


2020 ◽  
Vol 6 (38) ◽  
pp. eaba0099 ◽  
Author(s):  
Jacopo Dal Corso ◽  
Massimo Bernardi ◽  
Yadong Sun ◽  
Haijun Song ◽  
Leyla J. Seyfullah ◽  
...  

The Carnian Pluvial Episode (Late Triassic) was a time of global environmental changes and possibly substantial coeval volcanism. The extent of the biological turnover in marine and terrestrial ecosystems is not well understood. Here, we present a meta-analysis of fossil data that suggests a substantial reduction in generic and species richness and the disappearance of 33% of marine genera. This crisis triggered major radiations. In the sea, the rise of the first scleractinian reefs and rock-forming calcareous nannofossils points to substantial changes in ocean chemistry. On land, there were major diversifications and originations of conifers, insects, dinosaurs, crocodiles, lizards, turtles, and mammals. Although there is uncertainty on the precise age of some of the recorded biological changes, these observations indicate that the Carnian Pluvial Episode was linked to a major extinction event and might have been the trigger of the spectacular radiation of many key groups that dominate modern ecosystems.


Ecosystems ◽  
2007 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Stephen Porder ◽  
Peter M. Vitousek ◽  
Oliver A. Chadwick ◽  
C. Page Chamberlain ◽  
George E. Hilley

Sign in / Sign up

Export Citation Format

Share Document