scholarly journals A signal cascade originated from epidermis defines apical-basal patterning of Arabidopsis shoot apical meristems

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Han Han ◽  
An Yan ◽  
Lihong Li ◽  
Yingfang Zhu ◽  
Bill Feng ◽  
...  
2012 ◽  
Vol 37 (12) ◽  
pp. 2251-2260
Author(s):  
Jing-Yu GUO ◽  
Zhi-Xiong CHEN ◽  
Bing-Yao YANG ◽  
Xin-Fen CHEN ◽  
Xiang-Dong LIU ◽  
...  

2006 ◽  
Vol 37 (6) ◽  
pp. 371-374 ◽  
Author(s):  
N. M. Kaznina ◽  
G. F. Laidinen ◽  
A. F. Titov

Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 469-481 ◽  
Author(s):  
K. Lynn ◽  
A. Fernandez ◽  
M. Aida ◽  
J. Sedbrook ◽  
M. Tasaka ◽  
...  

Several lines of evidence indicate that the adaxial leaf domain possesses a unique competence to form shoot apical meristems. Factors required for this competence are expected to cause a defect in shoot apical meristem formation when inactivated and to be expressed or active preferentially in the adaxial leaf domain. PINHEAD, a member of a family of proteins that includes the translation factor eIF2C, is required for reliable formation of primary and axillary shoot apical meristems. In addition to high-level expression in the vasculature, we find that low-level PINHEAD expression defines a novel domain of positional identity in the plant. This domain consists of adaxial leaf primordia and the meristem. These findings suggest that the PINHEAD gene product may be a component of a hypothetical meristem forming competence factor. We also describe defects in floral organ number and shape, as well as aberrant embryo and ovule development associated with pinhead mutants, thus elaborating on the role of PINHEAD in Arabidopsis development. In addition, we find that embryos doubly mutant for PINHEAD and ARGONAUTE1, a related, ubiquitously expressed family member, fail to progress to bilateral symmetry and do not accumulate the SHOOT MERISTEMLESS protein. Therefore PINHEAD and ARGONAUTE1 together act to allow wild-type growth and gene expression patterns during embryogenesis.


2020 ◽  
Vol 21 (12) ◽  
pp. 4295 ◽  
Author(s):  
Rafael Cruz ◽  
Gladys F. A. Melo-de-Pinna ◽  
Alejandra Vasco ◽  
Jefferson Prado ◽  
Barbara A. Ambrose

Unlike seed plants, ferns leaves are considered to be structures with delayed determinacy, with a leaf apical meristem similar to the shoot apical meristems. To better understand the meristematic organization during leaf development and determinacy control, we analyzed the cell divisions and expression of Class I KNOX genes in Mickelia scandens, a fern that produces larger leaves with more pinnae in its climbing form than in its terrestrial form. We performed anatomical, in situ hybridization, and qRT-PCR experiments with histone H4 (cell division marker) and Class I KNOX genes. We found that Class I KNOX genes are expressed in shoot apical meristems, leaf apical meristems, and pinnae primordia. During early development, cell divisions occur in the most distal regions of the analyzed structures, including pinnae, and are not restricted to apical cells. Fern leaves and pinnae bear apical meristems that may partially act as indeterminate shoots, supporting the hypothesis of homology between shoots and leaves. Class I KNOX expression is correlated with indeterminacy in the apex and leaf of ferns, suggesting a conserved function for these genes in euphyllophytes with compound leaves.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Thomas Montenegro-Johnson ◽  
Soeren Strauss ◽  
Matthew D. B. Jackson ◽  
Liam Walker ◽  
Richard S. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document