meristem size
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Borja Belda-Palazon ◽  
Monica Costa ◽  
Tom Beeckman ◽  
Filip Rolland ◽  
Elena Baena-Gonzalez

The phytohormone abscisic acid (ABA) promotes plant tolerance to major stresses like drought, partly by modulating plant growth and development. However, the underlying mechanisms are poorly understood. Here, we show that cell proliferation in the Arabidopsis thaliana root meristem is controlled by the interplay between three kinases, SNF1-RELATED KINASE 2 (SnRK2), the main driver of ABA signaling, the SnRK1 energy sensor, and the growth-promoting TARGET OF RAPAMYCIN (TOR) kinase. Under favorable conditions, the SnRK1α1 catalytic subunit is enriched in the nuclei of root meristematic cells and this is accompanied by normal cell proliferation and meristem size. Depletion of SnRK2s in a snrk2.2 snrk2.3 double mutant causes constitutive cytoplasmic localization of SnRK1α1 and a reduction in meristem size, suggesting that, under non-stress conditions, SnRK2s enable growth by retaining SnRK1α1 in the nucleus. In response to elevated ABA levels, SnRK1α1 translocates to the cytoplasm and this is accompanied by inhibition of TOR, decreased cell proliferation and meristem size. Blocking nuclear export with leptomycin B abrogates ABA-driven SnRK1α1 relocalization to the cytoplasm and the inhibition of TOR. Fusion of SnRK1α1 to an SV40 nuclear localization signal leads to defective TOR repression in response to ABA, demonstrating that SnRK1α1 nuclear exit is a premise for this repression. Finally, the SnRK2-dependent changes in SnRK1α1 subcellular localization are specific to the proliferation zone of the meristem, underscoring the relevance of this mechanism for growth regulation.


Author(s):  
Shuping Li ◽  
Shujun Meng ◽  
Jianfeng Weng ◽  
Qingyu Wu

2021 ◽  
Author(s):  
Toshisagba Longkumer ◽  
Chih-Yun Chen ◽  
Marco Biancucci ◽  
Bhaskara Govinal Badiger ◽  
Paul E. Verslues

During moderate severity drought and low water potential (Ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Clade E Growth-Regulating 2 (EGR2) protein phosphatase and Microtubule Associated Stress Protein 1 (MASP1) differed in their stoichiometry of expression across the root meristem and had opposing effects on root meristem activity at low Ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low Ψw stress. This, along with the ability of phosphomimic MASP1 to overcome EGR suppression of root meristem size and observation that ectopic EGR expression had no effect on unstressed plants, indicated that during low Ψw EGR activation and attenuation of MASP1 phosphorylation in their overlapping zone of expression determines root meristem size and activity. Ectopic EGR expression also decreased root cell size at low Ψw. Conversely, both the egr1-1egr2-1 and egr1-1egr2-1masp1-1 mutants had similarly increased root cell size; but, only egr1-1egr2-1 had increased cell division. These observations demonstrated that EGRs affect meristem activity via MASP1 but affect cell expansion via other mechanisms. Interestingly, EGR2 was highly expressed in the root cortex, a cell type important for growth regulation and environmental response.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1962
Author(s):  
Kewalee Jantapo ◽  
Watcharapong Wimonchaijit ◽  
Wenfei Wang ◽  
Juthamas Chaiwanon

Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinosteroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear. Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified 4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively. The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the treatments could not promote root meristem size and cell elongation simultaneously. Our study demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth and the foraging response to N deficiency.


2021 ◽  
Vol 22 (9) ◽  
pp. 4731
Author(s):  
Jacob P. Rutten ◽  
Kirsten H. Ten Tusscher

After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form a regulatory network that governs the patterning of this root meristem. Still, which functional constraints contributed to shaping the dynamics and architecture of this network, has largely remained unanswered. Using a combination of modeling approaches we reveal how the interplay between auxin and PLTs enables meristem activation in response to above-threshold stimulation, while its embedding in a PIN-mediated auxin reflux loop ensures localized PLT transcription and thereby, a finite meristem size. We furthermore demonstrate how this constrained PLT transcriptional domain enables independent control of meristem size and division rates, further supporting a division of labor between auxin and PLT. We subsequently reveal how the weaker auxin antagonism of the earlier active Arabidopsis response regulator 12 (ARR12) may arise from the absence of a DELLA protein interaction domain. Our model indicates that this reduced strength is essential to prevent collapse in the early stages of meristem expansion while at later stages the enhanced strength of Arabidopsis response regulator 1 (ARR1) is required for sufficient meristem size control. Summarizing, our work indicates that functional constraints significantly contribute to shaping the auxin–cytokinin–PLT regulatory network.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chuanmei Zhu ◽  
Lei Liu ◽  
Olivia Crowell ◽  
Hui Zhao ◽  
Thomas P. Brutnell ◽  
...  

The CLAVATA pathway controls meristem size during inflorescence development in both eudicots and grasses, and is initiated by peptide ligands encoded by CLV3/ESR-related (CLE) genes. While CLV3 controls all shoot meristems in Arabidopsis, evidence from cereal grasses indicates that different meristem types are regulated by different CLE peptides. The rice peptide FON2 primarily controls the size of the floral meristem, whereas the orthologous peptides CLE7 and CLE14 in maize have their most dramatic effects on inflorescence and branch meristems, hinting at diversification among CLE responses in the grasses. Setaria viridis is more closely related to maize than to rice, so can be used to test whether the maize CLE network can be generalized to all members of subfamily Panicoideae. We used CRISPR-Cas9 in S. viridis to knock out the SvFON2 gene, the closest homolog to CLV3 and FON2. Svfon2 mutants developed larger inflorescence meristems, as in maize, but had normal floral meristems, unlike Osfon2, suggesting a panicoid-specific CLE network. Vegetative traits such as plant height, tiller number and leaf number were not significantly different between mutant and wild type plants, but time to heading was shorter in the mutants. In situ hybridization showed strong expression of Svfon2 in the inflorescence and branch meristems, consistent with the mutant phenotype. Using bioinformatic analysis, we predicted the co-expression network of SvFON2 and its signaling components, which included genes known to control inflorescence architecture in maize as well as genes of unknown function. The similarity between SvFON2 function in Setaria and maize suggests that its developmental specialization in inflorescence meristem control may be shared among panicoid grasses.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1774
Author(s):  
Khuat Huu Trung ◽  
Quan Hong Tran ◽  
Ngoc Hong Bui ◽  
Thuy Thi Tran ◽  
Kong Quy Luu ◽  
...  

Meristems are central to plant growth and development, yet evidence of directly manipulating this control to improve crop yield is scarce. Kernel row number (KRN) is an important agronomic trait that can directly affect maize (Zea mays L.) yield. However, this trait is difficult to select by phenotyping, since it is highly variable in the mixed genetic backgrounds in early selfing generations. This study sought to improve this trait by marker-assisted backcrossing (MABC) of a weak allele of FASCIATED EAR 2 that is known to affect inflorescence meristem size, but the effect of which on yield is unclear. All of the four introgressed tropical elite inbreds of different heterotic groups, which are homozygous for the fea2-1328 allele, had 2–5 more KRNs compared to their respective recurrent parents. Furthermore, one hybrid made from crosses between two introgressed parents also had KRN increases that resulted in up to 28% yield increase compared to the original hybrid across multiple yield trials. The novel negative effects of the pericentromeric fea2 and/or its linkage drag effect on plant height, seed weight, and ear length, which could prevent line improvement, were revealed in several genetic backgrounds. Integration of conventional phenotypic selection to overcome these undesirable effects was discussed. This is the first work to demonstrate the possibility to increase yield of maize varieties using a mutation in a meristem size regulator. The crossing, selection strategies, and recombinant lines in this work can be applied to other elite maize hybrids and provide a potentially straightforward, non-transgenic way to improve the yield of an existing variety by 8–28%.


2020 ◽  
Vol 104 (4-5) ◽  
pp. 499-511
Author(s):  
Wei Jiang ◽  
Shaoli Zhou ◽  
Honglin Huang ◽  
Huazhi Song ◽  
Qinglu Zhang ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Yuki Matsuura ◽  
Narumi Fukasawa ◽  
Kosuke Ogita ◽  
Michiko Sasabe ◽  
Tatsuo Kakimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document