histone h4
Recently Published Documents


TOTAL DOCUMENTS

1228
(FIVE YEARS 211)

H-INDEX

107
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Sumera Perveen ◽  
Carlos A Zepeda-Velazquez ◽  
David McLeod ◽  
Richard Marcellus ◽  
Mohammed Mohammed ◽  
...  

RBBP4 is a nuclear WD40 motif-containing protein widely implicated in various cancers and a putative drug target. It interacts with multiple proteins within diverse complexes such as nucleosome remodeling and deacetylase (NuRD) complex and polycomb repressive complex 2 (PRC2), as well as histone H3 and H4 through two distinct binding sites. B-cell lymphoma/leukemia 11A (BCL11A), friend of GATA-1 (FOG-1), plant homeodomain finger protein 6 (PHF6) and histone H3 bind to the top of the donut-shaped seven-bladed β-propeller fold of RBBP4, while suppressor of zeste 12 (SUZ12), metastasis associated protein 1 (MTA1) and histone H4 bind to a pocket on the side of the WD40 repeats of this protein. Here, we report the discovery of the first small molecule antagonists of the RBBP4 top pocket, competing with interacting peptides from proteins such as BCL11A and histone H3. We also determined the first crystal structure of RBBP4 in complex with a small molecule (OICR17251), paving the path for structure-guided design and optimization towards more potent antagonists.


Aquaculture ◽  
2021 ◽  
pp. 737807
Author(s):  
Shen Yang ◽  
Jian Li ◽  
Jude Juventus Aweya ◽  
Shaogui He ◽  
Shanggui Deng ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tommy Stormberg ◽  
Sridhar Vemulapalli ◽  
Shaun Filliaux ◽  
Yuri L. Lyubchenko

AbstractChromatin structure is dictated by nucleosome assembly and internucleosomal interactions. The tight wrapping of nucleosomes inhibits gene expression, but modifications to histone tails modulate chromatin structure, allowing for proper genetic function. The histone H4 tail is thought to play a large role in regulating chromatin structure. Here we investigated the structure of nucleosomes assembled with a tail-truncated H4 histone using Atomic Force Microscopy. We assembled tail-truncated H4 nucleosomes on DNA templates allowing for the assembly of mononucleosomes or dinucleosomes. Mononucleosomes assembled on nonspecific DNA led to decreased DNA wrapping efficiency. This effect is less pronounced for nucleosomes assembled on positioning motifs. Dinucleosome studies resulted in the discovery of two effects- truncation of the H4 tail does not diminish the preferential positioning observed in full-length nucleosomes, and internucleosomal interaction eliminates the DNA unwrapping effect. These findings provide insight on the role of histone H4 in chromatin structure and stability.


2021 ◽  
Author(s):  
Pierre-Olivier Esteve ◽  
Vishnu Udayakumaran Nair Sunitha Kumary ◽  
Christian Ruse ◽  
Hang Gyeong Chin ◽  
Sriharsa Pradhan

In mammalian cells, SET8 mediated Histone H4 Lys 20 monomethylation (H4K20me1) has been implicated in regulating mitotic condensation, DNA replication, DNA damage response, and gene expression. Here we show SET8, the only known enzyme for H4K20me1 is post-translationally poly ADP-ribosylated by PARP1 on lysine residues. PARP1 interacts with SET8 in a cell cycle-dependent manner. Poly ADP-ribosylation on SET8 renders it catalytically compromised and it undergoes degradation via ubiquitylation pathway. Knockdown of PARP1 shifted the relative dynamic equilibrium of H4K20me2 to H4k20me3 in cells. Overexpression or knockdown of PARP1 led to aberrant H4K20me1 domains genome-wide, impacting Wnt signaling pathways genes and transcription factor binding site enrichment. Therefore, SET8 mediated chromatin remodeling and gene expression in mammalian cells are influenced by poly ADP-ribosylation by PARP1.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Calvin Jon A Leonen ◽  
Miho Shimada ◽  
Caroline E Weller ◽  
Tomoyoshi Nakadai ◽  
Peter L Hsu ◽  
...  

The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2944-2944
Author(s):  
Amal Mechaal ◽  
Amudha Ganapathy ◽  
Dolores Mahmud ◽  
Taha Y Taha ◽  
Rajeev Ranjan ◽  
...  

Abstract The treatment outcomes for patients diagnosed with acute myeloid leukemia (AML) are still dismal. Recent advances in understanding AML indicate that the lack of efficacy is primarily due to non-specificity of currently used chemotherapeutics targeting both leukemic stem/progenitor cells (LSC) and normal hematopoietic stem cells (HSC). Thus, a critical barrier is the identification of innovative therapies that selectively target LSC. Histone deacetylase 8 (HDAC8) has been shown to enhance p53 protein deacetylation, which results in inactivation of p53, promoting LSC survival. We hypothesize that enzymatic/non-enzymatic role of HDAC8 is critical for LSC survival but not for HSCs. Then, we characterized our two tetrahydroisoquinoline (TIQ)-based selective HDAC8 inhibitors (HDAC8i) BIP and OCH3 for growth inhibition, apoptosis, activation of caspase 3, integrity of mitochondrial membrane potential (MMP), and acetylation of histone H4 in human leukemia cell lines. The growth inhibitory effects observed in cell lines were validated using bone marrow (BM) or peripheral blood (PB) cells from AML patients. Colony forming cell (CFC) assays were performed using AML BM/PB cells treated with OCH3 or BIP. OCH3 and BIP were also tested for hematotoxicity using normal CB CD34+ cells. Furthermore, we compared class I HDAC isoform engagement in human normal cord blood (CB) CD34+ cells and in SET-2 leukemia cells using our novel photoreactive probe TH1143. In CD34+ cells, TH1143 had higher level of engagement for HDAC1 and 2, whereas engagement of HDAC3 and 8 was minimal. In SET-2 cells, HDAC3 and HDAC8 displayed relatively higher engagement with TH1143 indicating HDAC engagement is likely cell type specific. The biological efficacies of OCH3 at 50uM and BIP at 25uM were noted to exert >50% growth inhibition in KG1 and in K562 leukemia cells. Both OCH3 and BIP significantly increased the number of apoptotic cells and there was an enhanced active caspase-3 activity. Furthermore, OCH3 and BIP treated cells displayed lower red/green ratio in comparison to control, indicative of poor MMP and depolarization to induce apoptosis (Table 1.a). OCH3 and BIP were further validated by using BM/PB cells from AML patients showing growth inhibition. This was also accompanied by increase in apoptotic cells by OCH3 and BIP. In contrast to BIP, OCH3 spared CB CD34+ cells as demonstrated by notably lower growth inhibition, apoptotic cells vs control when compared with primary AML cells from patients. Both OCH3 and BIP displayed minimal inhibition of CFU growth in CD34+ cells. However, HDAC8i induced significant CFU growth inhibition in primary AML samples suggesting that HDAC8i spares normal CFU progenitors but not leukemia progenitors (Table 1.b). Notably, both BIP and OCH3 lack ability to exert acetylation of histone H4, unlike broad spectrum HDAC inhibitor TSA (MFI with OCH3=0.96±0.03, BIP=0.77±0, TSA =1.63±0.15) which is consistent with isoform selectivity of OCH3 and BIP. The leukemia growth inhibitory effects at LSC level was demonstrated using ex vivo OCH3 treated AML patient derived BM/PB cells transplantation in humanized immunodeficient NSGS mice. After 10 to 12 weeks of transplantation mice receiving untreated AML cells had 7.73±2.18% while with OCH3 treatment mice had 4.84±1.37% human CD34+ leukemia cells, a 38% reduction in CD34+ leukemia cells, despite only a single ex vivo exposure to OCH3. Furthermore, in a second model, NSGS humanized mice were transplanted (IV) with primary leukemia cells from AML patients and after 4 weeks injected (IP) with OCH3 or vehicle control. After 12 weeks of transplantation in this second model human primary AML cell burden was 5.74±1.31% (OCH3) and 18.13±12.76% (vehicle control), while mice transplanted with normal CD34+ cells treated similarly with OCH3 or vehicle control displayed no detectable inhibition of human myeloid cell chimerism (OCH3:12.28 ± 3.31% vs vehicle control: 17.92±11.96%). Taken together, our data indicate that HDAC8 isoform inhibitor, OCH3 displayed significant inhibition of primary AML patient derived leukemia cells growth in vitro and in vivo in contrast to normal CD34+ cells. Selective inhibition of HDAC8 is sufficient to cause growth inhibition in primary AML progenitors including LSCs in vivo while sparing normal HSCs thus offer opportunities for further development of HDAC8i as new experimental therapeutics in AML. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4710-4710
Author(s):  
Tian Xia ◽  
Ming Liu ◽  
Quan Zhao ◽  
Rongfu Zhou ◽  
Bing Chen ◽  
...  

Abstract Protein arginine methyltransferase 5 (PRMT5), a histone methyltransferase responsible for the symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s), is an enzyme that participates in tumor cell progression in a variety of hematological malignancies. However, the biological functions of PRMT5 in multiple myeloma (MM) and the underlying molecular mechanisms remain unclear. In this study, we conducted a bioinformatics analysis and found that PRMT5 expression was significantly upregulated in MM. In vitro and in vivo phenotypic experiments revealed that knockdown of PRMT5 expression enhanced cell pyroptosis in MM. Moreover, we found that CASP1 expression was negatively correlated with PRMT5 expression, and repressing PRMT5 expression rescued both the phenotype and expression markers (N-GSDMD, IL-1b and IL-18). Inhibition of PRMT5 activity increased CASP1 expression and promoted MM cell pyroptosis. Finally, high expression of PRMT5 or low expression of CASP1 was correlated with poor overall survival in MM. Collectively, our results provide a mechanism by which PRMT5 regulates cell pyroptosis by silencing CASP1 in MM. Disclosures No relevant conflicts of interest to declare.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sarah G Swygert ◽  
Dejun Lin ◽  
Stephanie Portillo-Ledesma ◽  
Po-Yen Lin ◽  
Dakota R Hunt ◽  
...  

A longstanding hypothesis is that chromatin fiber folding mediated by interactions between nearby nucleosomes represses transcription. However, it has been difficult to determine the relationship between local chromatin fiber compaction and transcription in cells. Further, global changes in fiber diameters have not been observed, even between interphase and mitotic chromosomes. We show that an increase in the range of local inter-nucleosomal contacts in quiescent yeast drives the compaction of chromatin fibers genome-wide. Unlike actively dividing cells, inter-nucleosomal interactions in quiescent cells require a basic patch in the histone H4 tail. This quiescence-specific fiber folding globally represses transcription and inhibits chromatin loop extrusion by condensin. These results reveal that global changes in chromatin fiber compaction can occur during cell state transitions, and establish physiological roles for local chromatin fiber folding in regulating transcription and chromatin domain formation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi29-vi29
Author(s):  
Mingzhi Han ◽  
Xingang Li

Abstract BACKGROUND Glioblastoma (GBM) is the most malignant primary tumor of the central nervous system, while the pathogenesis remains unclear. Protein lysine methyltransferase SETD8, which is responsible for the modification of histone H4K20me1, has been shown to play an important role in cellular transcriptional regulation and the development of a variety of tumors, yet its role in the malignant progression of GBM has not been elucidated. MATERIAL AND METHODS In the present study, we used primary GBM cell lines, intracranial xenograft model, transcriptome sequencing together with ChIP-sequencing, aiming to elucidate the molecular mechanism of SETD8-mediated H4K20me1 transcriptional regulation in promoting GBM progression. Furthermore, we evaluated the potential therapeutic significance in GBM using SETD8 small molecule inhibitor, UNC0379. RESULTS We found that SETD8 is aberrantly expressed in GBM tissues, accompanied by the dysregulation of H4K20me1 modification, which is associated with tumor pathology and prognosis. Using SETD8 inhibitor UNC0379 or knockdown of SETD8 significantly inhibited GBM cell proliferation in vitro and in vivo, and downregulated H4K20me1 modification level as well as transcriptome expression. CONCLUSION In summary, our work provide a novel insight into the role of SETD8/H4K20me1 axis. SETD8 overexpression mediated aberrant H4K20me1 modification act as a novel "transcriptional switch" in the malignant progression of glioma.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1147
Author(s):  
Thiebaut Charlène ◽  
Eve Louisane ◽  
Poulard Coralie ◽  
Le Romancer Muriel

PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.


Sign in / Sign up

Export Citation Format

Share Document