scholarly journals Cell lineage-specific transcriptome analysis for interpreting cell fate specification of proembryos

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuemei Zhou ◽  
Zhenzhen Liu ◽  
Kun Shen ◽  
Peng Zhao ◽  
Meng-Xiang Sun
Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 243-251 ◽  
Author(s):  
R.J. Sommer

The origin of novelty is one of the least understood evolutionary phenomena. One approach to study evolutionary novelty comes from developmental biology. During developmental cell fate specification of the nematode Pristionchus pacificus (Diplogastridae), five cell fates can be distinguished within a group of twelve ventral epidermal cells. The differentiation pattern of individual cells includes programmed cell death, cell fusion and vulval differentiation after induction by the gonad. A cell lineage comparison among species of seven different genera of the Diplogastridae indicates that the differentiation pattern of ventral epidermal cells is highly conserved. Despite this morphological conservation, cell ablation experiments indicate many independent alterations of underlying mechanisms of cell fate specification. Cell fusion and individual cell competence change during evolution as well as the differentiation property in response to inductive signaling. These results suggest that developmental mechanisms, some of which are redundantly involved in vulval fate specification of the genetic model organism Caenorhabditis elegans, can evolve without concomitant morphological change.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3175-3185 ◽  
Author(s):  
M.Q. Martindale ◽  
J.Q. Henry

The nemerteans belong to a phylum of coelomate worms that display a highly conserved pattern of cell divisions referred to as spiral cleavage. It has recently been shown that the fates of the four embryonic cell quadrants in two species of nemerteans are not homologous to those in other spiralian embryos, such as the annelids and molluscs (Henry, J. Q. and Martindale, M. Q. (1994a) Develop. Genetics 15, 64–78). Equal-cleaving molluscs utilize inductive interactions to establish quadrant-specific cell fates and embryonic symmetry properties following fifth cleavage. In order to elucidate the manner in which cell fates are established in nemertean embryos, we have conducted cell isolation and deletion experiments to examine the developmental potential of the early cleavage blastomeres of two equal-cleaving nemerteans, Nemertopsis bivittata and Cerebratulus lacteus. These two species display different modes of development: N. bivittata develops directly via a non-feeding larvae, while C. lacteus develops to form a feeding pilidium larva which undergoes a radical metamorphosis to give rise to the juvenile worm. By examining the development of certain structures and cell types characteristic of quadrant-specific fates for each of these species, we have shown that isolated blastomeres of the indirect-developing nemertean, C. lacteus, are capable of generating cell fates that are not a consequence of that cell's normal developmental program. For instance, dorsal blastomeres can form muscle fibers when cultured in isolation. In contrast, isolated blastomeres of the direct-developing species, N. bivittata do not regulate their development to the same extent. Some cell fates are specified in a precocious manner in this species, such as those that give rise to the eyes. Thus, these findings indicate that equal-cleaving spiralian embryos can utilize different mechanisms of cell fate and axis specification. The implications of these patterns of nemertean development are discussed in relation to experimental work in other spiralian embryos, and a model is presented that accounts for possible evolutionary changes in cell lineage and the process of cell fate specification amongst these protostome phyla.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4617-4622 ◽  
Author(s):  
G.V. Reddy ◽  
V. Rodrigues

We have used different cell markers to trace the development of the sensory cells of the thoracic microchaete. Our results dictate a revision in the currently accepted model for cell lineage within the mechanosensory bristle. The sensory organ progenitor divides to form two secondary progenitors: PIIa and PIIb. PIIb divides first to give rise to a tertiary progenitor-PIII and a glial cell. This is followed by division of PIIa to form the shaft and socket cells as described before. PIII expresses high levels of Elav and low levels of Prospero and divides to produce neuron and sheath. Its sibling cell expresses low Elav and high Prospero and is recognized by the glial marker, Repo. This cell migrates away from the other cells of the lineage following differentiation. The proposed modification in lineage has important implications for previous studies on sibling cell fate choice and cell fate specification in sensory systems.


2017 ◽  
Vol 91 (6) ◽  
pp. 1051-1063 ◽  
Author(s):  
Liang-Huan Qu ◽  
Xuemei Zhou ◽  
Xinbo Li ◽  
Shi-Sheng Li ◽  
Jing Zhao ◽  
...  

Development ◽  
2013 ◽  
Vol 140 (20) ◽  
pp. 4129-4144 ◽  
Author(s):  
Y. Kamachi ◽  
H. Kondoh

Sign in / Sign up

Export Citation Format

Share Document