Faculty Opinions recommendation of The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification.

Author(s):  
Patricia Simpson
Author(s):  
Mohammed M Mira ◽  
Eman A El-Khateeb ◽  
Reda M Gaafar ◽  
Abir U Igamberdiev ◽  
Robert D Hill ◽  
...  

Overexpression of phytoglobin retains stem cell fate specification and function in hypoxic root apical meristems


Development ◽  
2002 ◽  
Vol 129 (22) ◽  
pp. 5217-5225 ◽  
Author(s):  
Philip W. Becraft ◽  
Kejian Li ◽  
Nrisingha Dey ◽  
Yvonne Asuncion-Crabb

Mutants in the maize defective kernel1 (dek1) gene are blocked in embryogenesis and the endosperm is chalky and lacks an aleurone layer. Here we show that intermediate alleles result in embryos that lack a shoot axis while weak alleles result in endosperms with mosaic aleurone and deformed plants with epidermal cells that resemble bulliform cells, a specialized epidermal cell type. This indicates that dek1 functions in embryonic pattern formation, cell fate specification and pattern formation in the leaf epidermis, and cell fate specification in the endosperm. Thus, thedek1 gene product appears to control different cellular-developmental processes depending on cellular context. The phenotype of the weakdek1-Dooner allele resembles the crinkly4 (cr4)mutant phenotype. Double mutants between dek1 and cr4 showed elements of epistasis, additivity and synergy, suggesting that the gene products may function in overlapping developmental processes. cr4transcript was detectable in dek1 mutant kernels indicating that DEK1 was not required for Cr4 transcript accumulation. To test whether DEK1 regulated the ligand for the CR4 receptor kinase, a genetic mosaic analysis was performed. The dek1 phenotype appeared to be generally cell-autonomous, leading to the conclusion that it was not likely to produce a diffusible signal molecule, and therefore was not likely to regulate the CR4 ligand.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
John W Wizeman ◽  
Qiuxia Guo ◽  
Elliott M Wilion ◽  
James YH Li

We applied single-cell RNA sequencing to profile genome-wide gene expression in about 9400 individual cerebellar cells from the mouse embryo at embryonic day 13.5. Reiterative clustering identified the major cerebellar cell types and subpopulations of different lineages. Through pseudotemporal ordering to reconstruct developmental trajectories, we identified novel transcriptional programs controlling cell fate specification of populations arising from the ventricular zone and the rhombic lip, two distinct germinal zones of the embryonic cerebellum. Together, our data revealed cell-specific markers for studying the cerebellum, gene-expression cascades underlying cell fate specification, and a number of previously unknown subpopulations that may play an integral role in the formation and function of the cerebellum. Our findings will facilitate new discovery by providing insights into the molecular and cell type diversity in the developing cerebellum.


Development ◽  
2013 ◽  
Vol 140 (20) ◽  
pp. 4129-4144 ◽  
Author(s):  
Y. Kamachi ◽  
H. Kondoh

2003 ◽  
Vol 259 (1) ◽  
pp. 150-161 ◽  
Author(s):  
Jun Motoyama ◽  
Ljiljana Milenkovic ◽  
Mizuho Iwama ◽  
Yayoi Shikata ◽  
Matthew P. Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document