scholarly journals Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qun Ma ◽  
Yu Li ◽  
Rongsheng Wang ◽  
Hongquan Xu ◽  
Qiujiao Du ◽  
...  

AbstractFunction elements (FE) are vital components of nanochannel-systems for artificially regulating ion transport. Conventionally, the FE at inner wall (FEIW) of nanochannel−systems are of concern owing to their recognized effect on the compression of ionic passageways. However, their properties are inexplicit or generally presumed from the properties of the FE at outer surface (FEOS), which will bring potential errors. Here, we show that the FEOS independently regulate ion transport in a nanochannel−system without FEIW. The numerical simulations, assigned the measured parameters of FEOS to the Poisson and Nernst-Planck (PNP) equations, are well fitted with the experiments, indicating the generally explicit regulating-ion-transport accomplished by FEOS without FEIW. Meanwhile, the FEOS fulfill the key features of the pervious nanochannel systems on regulating-ion-transport in osmotic energy conversion devices and biosensors, and show advantages to (1) promote power density through concentrating FE at outer surface, bringing increase of ionic selectivity but no obvious change in internal resistance; (2) accommodate probes or targets with size beyond the diameter of nanochannels. Nanochannel-systems with only FEOS of explicit properties provide a quantitative platform for studying substrate transport phenomena through nanoconfined space, including nanopores, nanochannels, nanopipettes, porous membranes and two-dimensional channels.

1999 ◽  
Vol 09 (04) ◽  
pp. 695-704 ◽  
Author(s):  
V. N. BIKTASHEV ◽  
A. V. HOLDEN ◽  
S. F. MIRONOV ◽  
A. M. PERTSOV ◽  
A. V. ZAITSEV

Ventricular fibrillation is believed to be produced by the breakdown of re-entrant propagation waves of excitation into multiple re-entrant sources. These re-entrant waves may be idealized as spiral waves in two-dimensional, and scroll waves in three-dimensional excitable media. Optically monitored, simultaneously recorded endocardial and epicardial patterns of activation on the ventricular wall do not always show spiral waves. We show that numerical simulations, even with a simple homogeneous excitable medium, can reproduce the key features of the simultaneous endo- and epicardial visualizations of propagating activity, and so these recordings may be interpreted in terms of scroll waves within the ventricular wall.


Author(s):  
Li Cao ◽  
Hong Wu ◽  
Chunyang Fan ◽  
Zhiming Zhang ◽  
Benbing Shi ◽  
...  

Lamellar membranes with two-dimensional nanofluidic channels hold great promise in harvesting osmotic energy from salinity gradients. However, the power density is often limited by the high transmembrane resistance primarily caused...


1999 ◽  
Vol 13 (24n25) ◽  
pp. 3039-3047
Author(s):  
M. G. ZACHER ◽  
A. DORNEICH ◽  
R. EDER ◽  
W. HANKE ◽  
S. C. ZHANG

We discuss properties of a recently proposed SO(5) symmetric ladder model. Key features of the single particle spectral function that are emerging from the symmetry are numerically identified in the ladder model and in the photoemission spectrum of the two-dimensional t–J model.


2013 ◽  
Vol 380-384 ◽  
pp. 1143-1146
Author(s):  
Xiang Guo Liu

The paper researches the parametric inversion of the two-dimensional convection-diffusion equation by means of best perturbation method, draw a Numerical Solution for such inverse problem. It is shown by numerical simulations that the method is feasible and effective.


1988 ◽  
Vol 53 (6) ◽  
pp. 1107-1133 ◽  
Author(s):  
Bernard Fleet

A review of electrochemical reactor systems for the recovery of metals and for pollution control applications is presented. The major engineering factors which influence the design of reactors are evaluated and the key features of two-dimensional and three-dimensional reactor designs are discussed. Some examples of the application of electrochemical reactors to the recovery of metals from dilute solutions are given in the form of case studies, covering both pollution control and resource recovery processes. Finally a comparison is made of the relative technical and economic merits of electrochemical recovery pollution control systems and conventional chemical waste treatment routes.


Sign in / Sign up

Export Citation Format

Share Document