scholarly journals Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xueke Wu ◽  
Zuochao Wang ◽  
Dan Zhang ◽  
Yingnan Qin ◽  
Minghui Wang ◽  
...  

AbstractExploring a simple, fast, solvent-free synthetic method for large-scale preparation of cheap, highly active electrocatalysts for industrial hydrogen evolution reaction is one of the most promising work today. In this work, a simple, fast and solvent-free microwave pyrolysis method is used to synthesize ultra-small (3.5 nm) Ru-Mo2C@CNT catalyst with heterogeneous structure and strong metal-support interaction in one step. The Ru-Mo2C@CNT catalyst only exhibits an overpotential of 15 mV at a current density of 10 mA cm−2, and exhibits a large turnover frequency value up to 21.9 s−1 under an overpotential of 100 mV in 1.0 M KOH. In addition, this catalyst can reach high current densities of 500 mA cm−2 and 1000 mA cm−2 at low overpotentials of 56 mV and 78 mV respectively, and it displays high stability of 1000 h. This work provides a feasible way for the reasonable design of other large-scale production catalysts.

2020 ◽  
Vol 10 (15) ◽  
pp. 5281-5287 ◽  
Author(s):  
Xue Liu ◽  
Dawei Gao ◽  
Yue Chi ◽  
Hongli Wang ◽  
Zhili Wang ◽  
...  

Au0.3Pd0.7/A-M-β-CD exhibits remarkable catalytic activity for hydrogen evolution from formic acid, which is attributed to strong metal–support interaction.


RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17504-17510 ◽  
Author(s):  
Nan Jiang ◽  
Xiao Zhou ◽  
Yi-Fan Jiang ◽  
Zhi-Wei Zhao ◽  
Liu-Bo Ma ◽  
...  

Oxygen-deficient Pd/Pr6O11 nanocatalysts with strong metal-support interaction exhibit highly efficient styrene and 4-NP hydrogenation reactions performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Shi ◽  
Zhi-Rui Ma ◽  
Yi-Ying Xiao ◽  
Yun-Chao Yin ◽  
Wen-Mao Huang ◽  
...  

AbstractTuning metal–support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure–activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal–support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure–activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt–H/Pt–OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.


Sign in / Sign up

Export Citation Format

Share Document