scholarly journals Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Myungjin Lee ◽  
Anita Changela ◽  
Jason Gorman ◽  
Reda Rawi ◽  
Tatsiana Bylund ◽  
...  

AbstractAntibody-Framework-to-Antigen Distance (AFAD) – the distance between the body of an antibody and a protein antigen – is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 Å and standard deviation (σ) of 2.4 Å. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition.

2015 ◽  
Vol 89 (16) ◽  
pp. 8130-8151 ◽  
Author(s):  
Katie M. Kilgore ◽  
Megan K. Murphy ◽  
Samantha L. Burton ◽  
Katherine S. Wetzel ◽  
S. Abigail Smith ◽  
...  

ABSTRACTAntibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen.IMPORTANCEMany in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.


2007 ◽  
Vol 81 (12) ◽  
pp. 6187-6196 ◽  
Author(s):  
E. S. Gray ◽  
P. L. Moore ◽  
I. A. Choge ◽  
J. M. Decker ◽  
F. Bibollet-Ruche ◽  
...  

ABSTRACT The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.


2007 ◽  
Vol 82 (2) ◽  
pp. 638-651 ◽  
Author(s):  
Yun Li ◽  
Bradley Cleveland ◽  
Igor Klots ◽  
Bruce Travis ◽  
Barbra A. Richardson ◽  
...  

ABSTRACT Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Mitch Brinkkemper ◽  
Kwinten Sliepen

The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.


2018 ◽  
Vol 92 (12) ◽  
Author(s):  
Ina Fetzer ◽  
Matthew R. Gardner ◽  
Meredith E. Davis-Gardner ◽  
Neha R. Prasad ◽  
Barnett Alfant ◽  
...  

ABSTRACTThe human immunodeficiency virus type 1 (HIV-1) entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralized all HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates that it has been tested against, suggesting that it may be useful in clinical settings, where antibody escape is a concern. Here, we characterize three new eCD4-Ig variants, each with a different architecture and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as the original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented the promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications.IMPORTANCEHIV-1 bNAbs have properties different from those of antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral life cycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the utility of antibodies as a treatment for HIV-1 infection or as part of an effort to eradicate latently infected cells. eCD4-Ig is an antibody-like entry inhibitor that closely mimics HIV-1's obligate receptors. eCD4-Ig appears to be qualitatively different from antibodies, since it neutralizes all HIV-1, HIV-2, and SIV isolates. Here, we characterize three new structurally distinct eCD4-Ig variants and show that each excels in a key property useful to prevent, treat, or cure an HIV-1 infection. For example, one variant neutralized HIV-1 most efficiently, while others best enlisted natural killer cells to eliminate infected cells. These observations will help generate eCD4-Ig variants optimized for different clinical applications.


2019 ◽  
Vol 94 (6) ◽  
Author(s):  
Isabelle Staropoli ◽  
Jérémy Dufloo ◽  
Anaïs Ducher ◽  
Pierre-Henri Commere ◽  
Anna Sartori-Rupp ◽  
...  

ABSTRACT The HIV-1 Env protein is exposed at the surface of virions and infected cells. Env fluctuates between different closed and open structural states and these conformations influence both viral infectivity and sensitivity to antibody binding and neutralization. We established a flow virometry assay to visualize Env proteins at the surface of human immunodeficiency virus type 1 (HIV-1) virions. The assay is performed on ultracentrifuged fluorescent viral particles that are stained with a panel of broadly neutralizing antibodies (bNAbs) and nonneutralizing antibodies (nnAbs) that probe different epitopes of Env. We used this assay to compare Env at the surface of producer cells and viral particles and to analyze the effect of Nef, CD4, and SERINC5 on Env accessibility to antibodies. We studied the laboratory-adapted strain NL4-3 and two transmitted/founder viruses, THRO and CH058. We confirm that antibody accessibility varies between viral strains and show that Nef, CD4, and SERINC5 additively impact Env conformations. We further demonstrate that the Env accessibility profile on virions is globally similar to that observed on HIV-1-infected cells, with some noticeable differences. For instance, nnAbs bind to virions more efficiently than to producer cells, likely reflecting changes in Env conformational states on mature viral particles. This test complements other techniques and provides a convenient and simple tool for quantifying and probing the structure of Env at the virion surface and to analyze the impact of viral and cellular proteins on these parameters. IMPORTANCE HIV-1 Env conformation is one of the key parameters determining viral infectivity. The flow virometry-based assay developed in this study allows for the characterization of proteins incorporated in HIV-1 particles. We studied the conformation of HIV-1 Env and the impact that the viral protein Nef and the cellular proteins CD4 and SERINC5 have on Env accessibility to antibodies. Our assay permitted us to highlight some noticeable differences in the conformation of Env between producer cells and viral particles. It contributes to a better understanding of the actual composition of HIV-1 particles.


2007 ◽  
Vol 81 (17) ◽  
pp. 9268-9278 ◽  
Author(s):  
Erin E. Verity ◽  
Dimitra Zotos ◽  
Kim Wilson ◽  
Catherine Chatfield ◽  
Victoria A. Lawson ◽  
...  

ABSTRACT The Sydney Blood Bank Cohort (SBBC) consists of eight blood transfusion recipients infected with nef-attenuated human immunodeficiency virus type 1 (HIV-1) acquired from a single donor. Here, we show that viral phenotypes and antibody responses differ considerably between individual cohort members, despite the single source of infection. Replication of isolated virus varied from barely detectable to similar to that of the wild-type virus, and virus isolated from five SBBC members showed coreceptor usage signatures unique to each individual. Higher viral loads and stronger neutralizing antibody responses were associated with better-replicating viral strains, and detectable viral replication was essential for the development of strong and sustained humoral immune responses. Despite the presence of strong neutralizing antibodies in a number of SBBC members, disease progression was not prevented, and each cohort member studied displayed a unique outcome of infection with nef-attenuated HIV-1.


2005 ◽  
Vol 79 (16) ◽  
pp. 10200-10209 ◽  
Author(s):  
Bo Peng ◽  
Liqun Rejean Wang ◽  
Victor Raúl Gómez-Román ◽  
Alberta Davis-Warren ◽  
David C. Montefiori ◽  
...  

ABSTRACT A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1MN env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIVSF162 gp140ΔV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1MN env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1SF162 gp140ΔV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.


2009 ◽  
Vol 84 (5) ◽  
pp. 2573-2584 ◽  
Author(s):  
Catherine A. Blish ◽  
D. Noah Sather ◽  
George Sellhorn ◽  
Leonidas Stamatatos ◽  
Yide Sun ◽  
...  

ABSTRACT Development of broadly cross-reactive neutralizing antibodies (NAbs) remains a major goal of HIV-1 vaccine development, but most candidate envelope immunogens have had limited ability to cross-neutralize heterologous strains. To evaluate the immunogenicity of subtype A variants of HIV-1, rabbits were immunized with pairs of closely related subtype A envelopes from the same individual. In each immunogen pair, one variant was readily neutralized by a variety of monoclonal antibodies and plasma antibodies, while the other was neutralization resistant, suggesting differences in the exposures of key epitopes. The breadth of the antibody response was evaluated against subtype A, B, C, and D variants of HIV-1. The specificity of the immunogen-derived neutralizing antibody response was also compared to that of the infected individuals from whom these variants were cloned. None of the immunogens produced broad neutralizing antibodies in immunized animals, and most of the neutralizing antibodies were directed to the variable loops, particularly the V3 loop. No detectable antibodies to either of the potentially exposed conserved epitopes, the membrane proximal external region, or the CD4 binding site were found with immunized rabbits. In contrast, relatively little of the neutralizing activity within the plasma samples of the infected individuals was directed to linear epitopes within the variable loops. These data indicate that immunogens designed to expose conserved regions did not enhance generation of broadly neutralizing antibodies in comparison with the immunogens that failed to expose those regions using this immunization approach.


2009 ◽  
Vol 83 (18) ◽  
pp. 9577-9583 ◽  
Author(s):  
Kurt Vermeire ◽  
Kristel Van Laethem ◽  
Wouter Janssens ◽  
Thomas W. Bell ◽  
Dominique Schols

ABSTRACT Continuous specific downmodulation of CD4 receptor expression in T lymphocytes by the small molecule cyclotriazadisulfonamide (CADA) selected for the CADA-resistant human immunodeficiency virus type 1 (HIV-1) NL4.3 virus containing unique mutations in the C4 and V5 regions of gp120, likely stabilizing the CD4-binding conformation. The amino acid changes in Env were associated with decreased susceptibility to anti-CD4 monoclonal antibody treatment of the cells and with higher susceptibility of the virus to soluble CD4. In addition, the acquired ability of a CADA-resistant virus to infect cells with low CD4 expression was associated with an increased susceptibility of the virus to neutralizing antibodies from sera of several HIV-1-infected patients.


Sign in / Sign up

Export Citation Format

Share Document