scholarly journals A viral genome packaging ring-ATPase is a flexibly coordinated pentamer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Dai ◽  
Digvijay Singh ◽  
Suoang Lu ◽  
Vishal I. Kottadiel ◽  
Reza Vafabakhsh ◽  
...  

AbstractMulti-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.

2021 ◽  
Author(s):  
Li Dai ◽  
Digvijay Singh ◽  
Suoang Lu ◽  
Vishal Kottadiel ◽  
Reza Vafabakhsh ◽  
...  

Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, by direct counting using single-molecule fluorescence, we have determined that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise count of active/inactive subunit(s), we found, unexpectedly, that the packaging motor can tolerate an inactive sub-unit. However, motors containing an inactive subunit(s) exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a new packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, contrary to the prevailing notion of strict coordination amongst motor subunits of other packaging motors.


2016 ◽  
Vol 110 (3) ◽  
pp. 46a ◽  
Author(s):  
Li Dai ◽  
Digvijay Singh ◽  
Reza Vafabakhsh ◽  
Marthandan Mahalingam ◽  
Vishal Kottadiel ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 643a
Author(s):  
Reza Vafabakhsh ◽  
Kiran Kondabagil ◽  
Li Dai ◽  
Zhihong Zhang ◽  
Venigalla B. Rao ◽  
...  

2020 ◽  
Vol 48 (20) ◽  
pp. 11602-11614
Author(s):  
Youbin Mo ◽  
Nicholas Keller ◽  
Damian delToro ◽  
Neeti Ananthaswamy ◽  
Stephen C Harvey ◽  
...  

Abstract Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the ‘B-A scrunchworm’, predicts that ‘A-philic’ sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor. We observed no significant differences in motor velocities, even with A-philic sequences predicted to show higher translocation rate at high applied force. We also observed no significant changes in motor pausing and only modest changes in slipping. To more generally test for sequence dependence, we conducted correlation analyses across pairs of packaging events. No significant correlations in packaging rate, pausing or slipping versus sequence position were detected across repeated measurements with several different DNA sequences. These studies suggest that viral genome packaging is insensitive to DNA sequence and fluctuations in packaging motor velocity, pausing and slipping are primarily stochastic temporal events.


Author(s):  
Douglas E. Smith ◽  
Youbin E. Mo ◽  
Nick Keller ◽  
Damian delToro ◽  
Neeti Ananthaswamy ◽  
...  

2007 ◽  
Vol 26 (2) ◽  
pp. 527-537 ◽  
Author(s):  
Dan Shu ◽  
Hui Zhang ◽  
Jiashun Jin ◽  
Peixuan Guo

2016 ◽  
Author(s):  
Brendan J. Hilbert ◽  
Janelle A. Hayes ◽  
Nicholas P. Stone ◽  
Rui-Gang Xu ◽  
Brian A. Kelch

AbstractMany viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the ATPase that powers DNA translocation and an endonuclease that cleaves the concatemeric genome both at initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage is still mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nucleolysis. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of nucleolysis suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid shell during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the procapsid upon completion of packaging unlocks the nuclease domains to cleave DNA.


Virology ◽  
2014 ◽  
Vol 468-470 ◽  
pp. 660-668 ◽  
Author(s):  
Kiran Kondabagil ◽  
Li Dai ◽  
Reza Vafabakhsh ◽  
Taekjip Ha ◽  
Bonnie Draper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document