dna packaging motor
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 2)

Author(s):  
Alexander B. Tong ◽  
Carlos Bustamante

Abstract Ring ATPases perform a variety of tasks in the cell. Their function involves complex communication and coordination among the often identical subunits. Translocases in this group are of particular interest as they involve both chemical and mechanical actions in their operation. We study the DNA packaging motor of bacteriophage φ29, and using single-molecule optical tweezers and single-particle cryo-electron microscopy, have discovered a novel translocation mechanism for a molecular motor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Dai ◽  
Digvijay Singh ◽  
Suoang Lu ◽  
Vishal I. Kottadiel ◽  
Reza Vafabakhsh ◽  
...  

AbstractMulti-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Juan P. Castillo ◽  
Alexander B. Tong ◽  
Sara Tafoya ◽  
Paul J. Jardine ◽  
Carlos Bustamante

AbstractRing ATPases that translocate disordered polymers possess lock-washer architectures that they impose on their substrates during transport via a hand-over-hand mechanism. Here, we investigate the operation of ring motors that transport ordered, helical substrates, such as the bacteriophage ϕ29 dsDNA packaging motor. This pentameric motor alternates between an ATP loading dwell and a hydrolysis burst wherein it packages one turn of DNA in four steps. When challenged with DNA-RNA hybrids and dsRNA, the motor matches its burst to the shorter helical pitches, keeping three power strokes invariant while shortening the fourth. Intermittently, the motor loses grip on the RNA-containing substrates, indicating that it makes optimal load-bearing contacts with dsDNA. To rationalize these observations, we propose a helical inchworm translocation mechanism in which, during each cycle, the motor increasingly adopts a lock-washer structure during the ATP loading dwell and successively regains its planar form with each power stroke during the burst.


2021 ◽  
Author(s):  
Li Dai ◽  
Digvijay Singh ◽  
Suoang Lu ◽  
Vishal Kottadiel ◽  
Reza Vafabakhsh ◽  
...  

Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, by direct counting using single-molecule fluorescence, we have determined that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise count of active/inactive subunit(s), we found, unexpectedly, that the packaging motor can tolerate an inactive sub-unit. However, motors containing an inactive subunit(s) exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a new packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, contrary to the prevailing notion of strict coordination amongst motor subunits of other packaging motors.


Biochemistry ◽  
2021 ◽  
Vol 60 (11) ◽  
pp. 886-897
Author(s):  
Abdullah F. U. H. Saeed ◽  
Chun Chan ◽  
Hongxin Guan ◽  
Bing Gong ◽  
Peixuan Guo ◽  
...  

2021 ◽  
Author(s):  
Long Zhang ◽  
Nicolas Burns ◽  
Michael Jordan ◽  
Lakmal Jayasinghe ◽  
Peixuan Guo

Biological nanopores for single-pore sensing have the advantage of size homogeneity, structural reproducibility, and channel amenability. In order to translate this to clinical applications, the functional biological nanopore must be...


2020 ◽  
Vol 295 (12) ◽  
pp. 3783-3793 ◽  
Author(s):  
Janelle A. Hayes ◽  
Brendan J. Hilbert ◽  
Christl Gaubitz ◽  
Nicholas P. Stone ◽  
Brian A. Kelch

Tailed bacteriophages use a DNA-packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component of this DNA-packaging machinery acts as a molecular matchmaker that recognizes both the viral genome and the main motor component, the large terminase (TerL). However, how TerS binds DNA and the TerL protein remains unclear. Here we identified gp83 of the thermophilic bacteriophage P74-26 as the TerS protein. We found that TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. A cryo-EM structure of TerSP76-26 revealed that it forms a ring with a wide central pore and radially arrayed helix–turn–helix domains. The structure further showed that these helix–turn–helix domains, which are thought to bind DNA by wrapping the double helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA-binding domain imposed strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacked the conserved C-terminal β-barrel domain used by other TerS proteins for binding TerL. This suggests that a well-ordered C-terminal β-barrel domain is not required for TerSP76-26 to carry out its matchmaking function. Our work highlights a thermophilic system for studying the role of small terminase proteins in viral maturation and presents the structure of TerSP76-26, revealing key differences between this thermophilic phage and its mesophilic counterparts.


Sign in / Sign up

Export Citation Format

Share Document