scholarly journals Recent developments of advanced micro-supercapacitors: design, fabrication and applications

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Fan Bu ◽  
Weiwei Zhou ◽  
Yihan Xu ◽  
Yu Du ◽  
Cao Guan ◽  
...  

AbstractThe rapid development of wearable, highly integrated, and flexible electronics has stimulated great demand for on-chip and miniaturized energy storage devices. By virtue of their high power density and long cycle life, micro-supercapacitors (MSCs), especially those with interdigital structures, have attracted considerable attention. In recent years, tremendous theoretical and experimental explorations have been carried out on the structures and electrode materials of MSCs, aiming to obtain better mechanical and electrochemical properties. The high-performance MSCs can be used in many fields, such as energy storage and medical assistant examination. Here, this review focuses on the recent progress of advanced MSCs in fabrication strategies, structural design, electrode materials design and function, and integrated applications, where typical examples are highlighted and analyzed. Furthermore, the current challenges and future development directions of advanced MSCs are also discussed.

RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 505 ◽  
Author(s):  
Samarjeet Singh Siwal ◽  
Qibo Zhang ◽  
Nishu Devi ◽  
Vijay Kumar Thakur

In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.


2017 ◽  
Vol 5 (3) ◽  
pp. 1094-1102 ◽  
Author(s):  
Yang Jiao ◽  
Jian Pei ◽  
Dahong Chen ◽  
Chunshuang Yan ◽  
Yongyuan Hu ◽  
...  

Metal–organic frameworks (MOFs) have obtained increasing attention as a kind of novel electrode material for energy storage devices.


2015 ◽  
Vol 3 (4) ◽  
pp. 1364-1387 ◽  
Author(s):  
Muhammad-Sadeeq Balogun ◽  
Weitao Qiu ◽  
Wang Wang ◽  
Pingping Fang ◽  
Xihong Lu ◽  
...  

This review highlights the progress and development of metal nitrides as electrode materials for energy storage devices.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Junye Cheng ◽  
Lingfeng Gao ◽  
Tian Li ◽  
Shan Mei ◽  
Cong Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (2D BP), well known as phosphorene, has triggered tremendous attention since the first discovery in 2014. The unique puckered monolayer structure endows 2D BP intriguing properties, which facilitate its potential applications in various fields, such as catalyst, energy storage, sensor, etc. Owing to the large surface area, good electric conductivity, and high theoretical specific capacity, 2D BP has been widely studied as electrode materials and significantly enhanced the performance of energy storage devices. With the rapid development of energy storage devices based on 2D BP, a timely review on this topic is in demand to further extend the application of 2D BP in energy storage. In this review, recent advances in experimental and theoretical development of 2D BP are presented along with its structures, properties, and synthetic methods. Particularly, their emerging applications in electrochemical energy storage, including Li−/K−/Mg−/Na-ion, Li–S batteries, and supercapacitors, are systematically summarized with milestones as well as the challenges. Benefited from the fast-growing dynamic investigation of 2D BP, some possible improvements and constructive perspectives are provided to guide the design of 2D BP-based energy storage devices with high performance.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1002
Author(s):  
Hongxing Wang ◽  
Feng Qiu ◽  
Chenbao Lu ◽  
Jinhui Zhu ◽  
Changchun Ke ◽  
...  

The preparation of redox-active, ultrathin polymer films as the electrode materials represents a major challenge for miniaturized flexible electronics. Herein, we demonstrated a liquid–liquid interfacial polymerization approach to a coordination polymer films with ultrathin thickness from tri(terpyridine)-based building block and iron atoms. The as-synthesized polymer films exhibit flexible properties, good redox-active and narrow bandgap. After directly transferred to silicon wafers, the on-chip micro-supercapacitors of TpPB-Fe-MSC achieved the high specific capacitances of 1.25 mF cm−2 at 50 mV s−1 and volumetric energy density of 5.8 mWh cm−3, which are superior to most of semiconductive polymer-based micro-supercapacitor (MSC) devices. In addition, as-fabricated on-chip MSCs exhibit typical alternating current (AC) line-filtering performance (−71.3° at 120 Hz) and a short resistance–capacitance (RC) time (0.06 ms) with the electrolytes of PVA/LiCl. This study provides a simple interfacial approach to redox-active polymer films for microsized energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document