scholarly journals Going around in circles: virulence plasmids in enteric pathogens

2018 ◽  
Vol 16 (8) ◽  
pp. 484-495 ◽  
Author(s):  
Giulia Pilla ◽  
Christoph M. Tang
Pathology ◽  
2001 ◽  
Vol 33 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Christopher J. McIverw ◽  
Grant Hansman ◽  
Peter White ◽  
Jennifer C. Doultree ◽  
Michael Catton ◽  
...  
Keyword(s):  

2020 ◽  
Vol 28 (8) ◽  
pp. 976-981
Author(s):  
Elahe Tajeddin ◽  
Leila Ganji ◽  
Zahra Hasani ◽  
Fahimeh Sadat Ghoalm Mostafaei ◽  
Masoumeh Azimirad

1999 ◽  
Vol 40 (4-5) ◽  
pp. 363-368 ◽  
Author(s):  
C. P. Gerba ◽  
J. A. Thurston ◽  
J. A. Falabi ◽  
P. M. Watt ◽  
M. M. Karpiscak

The enhancement of water quality by artificial wetland systems is increasingly being employed throughout the world. Three wetlands were studied in Tucson, AZ to evaluate their individual performance in the removal of indicator bacteria (coliforms), coliphage, and enteric pathogens (Giardia and Cryptosporidium). A duckweed-covered pond, a multi-species subsurface flow (SSF) and a multi-species surface flow (SF) wetland were studied. Removal of the larger microorganisms, Giardia and Cryptosporidium, was the greatest in the duckweed pond at 98 and 89 percent, respectively. The lowest removal occurred in the SF wetland, 73 percent for Giardia and 58 percent removal for Cryptosporidium. In contrast, the greatest removal of coliphage, total and fecal coliforms occurred in the SSF wetland, 95, 99, and 98 percent respectively, whereas the pond had the lowest removals (40, 62, and 61 percent, respectively). Sedimentation may be the primary removal mechanism within the duckweed pond since the removal was related to size, removal of the largest organisms being the greatest. However, the smaller microorganisms were removed more efficiently in the SSF wetland, which may be related to the large surface area available for adsorption and filtration. This study suggests that in order to achieve the highest treatment level of secondary unchlorinated wastewater, a combination of aquatic ponds and subsurface flow wetlands may be necessary.


2013 ◽  
Vol 11 (4) ◽  
pp. 326-332 ◽  
Author(s):  
Arun Jha ◽  
Beena Uppal ◽  
Sanjim Chadha ◽  
Prabhav Aggarwal ◽  
Roumi Ghosh ◽  
...  

Science ◽  
2018 ◽  
Vol 362 (6418) ◽  
pp. eaat9076 ◽  
Author(s):  
Yael Litvak ◽  
Mariana X. Byndloss ◽  
Andreas J. Bäumler

An imbalance in the colonic microbiota might underlie many human diseases, but the mechanisms that maintain homeostasis remain elusive. Recent insights suggest that colonocyte metabolism functions as a control switch, mediating a shift between homeostatic and dysbiotic communities. During homeostasis, colonocyte metabolism is directed toward oxidative phosphorylation, resulting in high epithelial oxygen consumption. The consequent epithelial hypoxia helps to maintain a microbial community dominated by obligate anaerobic bacteria, which provide benefit by converting fiber into fermentation products absorbed by the host. Conditions that alter the metabolism of the colonic epithelium increase epithelial oxygenation, thereby driving an expansion of facultative anaerobic bacteria, a hallmark of dysbiosis in the colon. Enteric pathogens subvert colonocyte metabolism to escape niche protection conferred by the gut microbiota. The reverse strategy, a metabolic reprogramming to restore colonocyte hypoxia, represents a promising new therapeutic approach for rebalancing the colonic microbiota in a broad spectrum of human diseases.


2021 ◽  
pp. 1098612X2110230
Author(s):  
Kyrsten J Janke ◽  
Linda S Jacobson ◽  
Jolene A Giacinti ◽  
J Scott Weese

Objectives The aims of this study were to determine the magnitude and duration of fecal viral DNA shedding after diagnosis of feline panleukopenia (FP) in a group of shelter cats using quantitative real-time PCR (qPCR); to assess the utility of a negative point-of-care test or the resolution of diarrhea and systemic signs as proxy measures for qPCR positivity; and to investigate patterns of additional enteric pathogens in relation to feline panleukopenia viral shedding duration. Methods Feline panleukopenia virus (FPV) infection in clinically affected shelter cats was confirmed by a commercial qPCR test. Observations were made on days 0, 3, 7, 14 and 21 post-diagnosis. Fecal flotation, FPV qPCR and the canine parvovirus IDEXX SNAP Parvo ELISA (SNAP) test were performed on fecal samples. Results Forty cats and kittens with confirmed panleukopenia were initially enrolled. Sixteen kittens were sampled until day 14, and 12 were followed to day 21. Median DNA viral copy numbers fell below the diagnostic cut-off by day 7, with 13/16, 6/16, 1/16 and 0/12 testing PCR-positive on days 3, 7, 14 and 21, respectively. The SNAP test was positive in 12/16 kittens on day 0 and only 3/16 on day 3. SNAP test results, diarrhea and systemic signs were inconsistent in relation to qPCR positivity post-diagnosis. Additional enteric pathogens were common. The presence of additional pathogen types was suggestive of a longer PCR shedding duration, but this was not tested statistically owing to the small sample size. Conclusions and relevance These findings suggest that cats should be isolated for at least 14 days after a diagnosis of FP, but that release from isolation after this point is reasonable, in association with a multifaceted infection control strategy. The study findings did not support using SNAP test results, diarrhea or systemic signs as proxy measures for virus shedding.


Sign in / Sign up

Export Citation Format

Share Document