scholarly journals A contextual binding theory of episodic memory: systems consolidation reconsidered

2019 ◽  
Vol 20 (6) ◽  
pp. 364-375 ◽  
Author(s):  
Andrew P. Yonelinas ◽  
Charan Ranganath ◽  
Arne D. Ekstrom ◽  
Brian J. Wiltgen
2013 ◽  
Vol 4 (1) ◽  
pp. 32-64 ◽  
Author(s):  
Elisa C. Castro ◽  
Ricardo R. Gudwin

In this paper the authors present the development of a scene-based episodic memory module for the cognitive architecture controlling an autonomous virtual creature, in a simulated 3D environment. The scene-based episodic memory has the role of improving the creature’s navigation system, by evoking the objects to be considered in planning, according to episodic remembrance of earlier scenes testified by the creature where these objects were present in the past. They introduce the main background on human memory systems and episodic memory study, and provide the main ideas behind the experiment.


2018 ◽  
Vol 72 (5) ◽  
pp. 1005-1028 ◽  
Author(s):  
Franziska Orscheschek ◽  
Tilo Strobach ◽  
Torsten Schubert ◽  
Timothy Rickard

There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black—right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black—“white”). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.


1999 ◽  
Vol 22 (3) ◽  
pp. 464-465 ◽  
Author(s):  
Amanda Parker

Three comments are made. The proposal that recollection and familiarity-based recognition take different thalamic routes does not fit recent experimental evidence, suggesting that mediodorsal thalamus acts in an integrative role with respect to prefrontal cortex. Second, the role of frontal cortex in episodic memory has been understated. Third, the role of the hippocampal axis is likely to be the computation and storage of ideothetic information.


2015 ◽  
Vol 38 ◽  
Author(s):  
Stanley B. Klein ◽  
Hans J. Markowitsch

AbstractThe relations between the semantic and episodic-autobiographical memory systems are more complex than described in the target article. We argue that understanding the noetic/autonoetic distinction provides critical insights into the foundation of the delineation between the two memory systems. Clarity with respect to the criteria for classification of these two systems, and the evolving conceptualization of episodic memory, can further neuroscientifically informed therapeutic approaches.


2021 ◽  
Author(s):  
Weinan Sun ◽  
Madhu Advani ◽  
Nelson Spruston ◽  
Andrew Saxe ◽  
James E Fitzgerald

Our ability to remember the past is essential for guiding our future behavior. Psychological and neurobiological features of declarative memories are known to transform over time in a process known as systems consolidation. While many theories have sought to explain the time-varying role of hippocampal and neocortical brain areas, the computational principles that govern these transformations remain unclear. Here we propose a theory of systems consolidation in which hippocampal-cortical interactions serve to optimize generalizations that guide future adaptive behavior. We use mathematical analysis of neural network models to characterize fundamental performance tradeoffs in systems consolidation, revealing that memory components should be organized according to their predictability. The theory shows that multiple interacting memory systems can outperform just one, normatively unifying diverse experimental observations and making novel experimental predictions. Our results suggest that the psychological taxonomy and neurobiological organization of declarative memories reflect a system optimized for behaving well in an uncertain future.


2019 ◽  
Author(s):  
Cristian Morales ◽  
Juan Facundo Morici ◽  
Nelson Espinosa ◽  
Agostina Sacson ◽  
Ariel Lara-Vasquez ◽  
...  

AbstractEpisodic memory establishes and stores relations among the different elements of an experience, which are often similar and difficult to distinguish. Pattern separation, implemented by the dentate gyrus, is a neural mechanism that allows the discrimination of similar experiences by orthogonalizing synaptic inputs. Granule cells support such disambiguation by sparse rate coding, a process tightly controlled by highly diversified GABAergic neuronal populations, such as somatostatin-expressing cells which directly target the dendritic arbor of granule cells, massively innervated by entorhinal inputs reaching the molecular layer and conveying contextual information. Here, we tested the hypothesis that somatostatin neurons regulate the excitability of the dentate gyrus, thus controlling the efficacy of pattern separation during memory encoding in mice. Indeed, optogenetic suppression of dentate gyrus somatostatin neurons increased spiking activity in putative excitatory neurons and triggered dentate spikes. Moreover, optical inhibition of somatostatin neurons impaired both contextual and spatial discrimination of overlapping episodic-like memories during task acquisition. Importantly, effects were specific for similar environments, suggesting that pattern separation was selectively engaged when overlapping conditions ought to be distinguished. Overall, our results suggest that somatostatin cells regulate excitability in the dentate gyrus and are required for effective pattern separation during episodic memory encoding.Significance statementMemory systems must be able to discriminate stored representations of similar experiences in order to efficiently guide future decisions. This is solved by pattern separation, implemented in the dentate gyrus by granule cells to support episodic memory formation. The tonic inhibitory bombardment produced by multiple GABAergic cell populations maintains low activity levels in granule cells, permitting the process of pattern separation. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the dentate gyrus. Hence, somatostatin cells constitute an ideal candidate to regulate pattern separation. Here, by using optogenetic stimulation in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


2007 ◽  
Vol 22 (3) ◽  
pp. 377-452 ◽  
Author(s):  
Donald G. MacKay ◽  
Lori E. James ◽  
Jennifer K. Taylor ◽  
Diane E. Marian

2020 ◽  
Author(s):  
Cristian Morales ◽  
Juan Facundo Morici ◽  
Nelson Espinosa ◽  
Agostina Sacson ◽  
Ariel Lara-Vasquez ◽  
...  

Abstract Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


Sign in / Sign up

Export Citation Format

Share Document