scholarly journals Spatially resolved steady-state negative capacitance

Nature ◽  
2019 ◽  
Vol 565 (7740) ◽  
pp. 468-471 ◽  
Author(s):  
Ajay K. Yadav ◽  
Kayla X. Nguyen ◽  
Zijian Hong ◽  
Pablo García-Fernández ◽  
Pablo Aguado-Puente ◽  
...  
Nature ◽  
2019 ◽  
Vol 568 (7753) ◽  
pp. E13-E13
Author(s):  
Ajay K. Yadav ◽  
Kayla X. Nguyen ◽  
Zijian Hong ◽  
Pablo García-Fernández ◽  
Pablo Aguado-Puente ◽  
...  

2022 ◽  
Author(s):  
Eugene A. Eliseev ◽  
Mykola E. Yelisieiev ◽  
Sergei V. Kalinin ◽  
Anna N. Morozovska

Author(s):  
Ajit K. Vallabhaneni ◽  
James Loy ◽  
Dhruv Singh ◽  
Xiulin Ruan ◽  
Jayathi Murthy

Raman spectroscopy is typically used to characterize graphene in experiments and also to measure properties like thermal conductivity and optical phonon lifetime. The laser-irradiation processes underlying this measurement technique include coupling between photons, electrons and phonons. Recent experimental studies have shown that e-ph scattering limits the performance of graphene-based electronic devices due to the difference in their timescales of relaxation resulting in various bottleneck effects. Furthermore, recently published thermal conductivity measurements on graphene are sensitive to the laser spot size which strengthens the possibility of non-equilibrium between various phonon groups. These studies point to the need to study the spatially-resolved non-equilibrium between various energy carriers in graphene. In this work, we demonstrate non-equilibrium in the e-ph interactions in graphene by solving the linearized electron and phonon Boltzmann transport equations (BTE) iteratively under steady state conditions. We start by assuming that all the electrons equilibrate rapidly to an elevated temperature under laser-irradiation and they gradually relax by phonon emission and reach a steady state. The electron and phonon BTEs are coupled because the e-ph scattering rate depends on the phonon population while the rate of phonon generation depends on the e-ph scattering rate. We used density-functional theory/density-functional perturbation theory (DFT/DFPT) to calculate the electronic eigen states, phonon frequencies and the e-ph coupling matrix elements. We calculated the rate of energy loss from the hot electrons in terms of the phonon generation rate (PGR) which serve as an input for solving the BTE. Likewise, ph-ph relaxation times are calculated from the anharmonic lattice dynamics (LD)/FGR. Through our work, we obtained the spatially resolved temperature profiles of all the relevant energy carriers throughout the entire domain; these are impossible to obtain through experiments.


Author(s):  
Derek McVay ◽  
Li Zhao ◽  
Jack Brouwer ◽  
Fred Jahnke ◽  
Matt Lambrech

A molten carbonate electrolysis cell (MCEC) is capable of separating carbon dioxide from methane reformate while simultaneously electrolyzing water. Methane reformate, for this study, primarily consists of carbon dioxide, hydrogen, methane, and a high percentage of water. Carbon dioxide is required for the operation of a MCEC since a carbonate ion is formed and travels from the reformate channel to the sweep gas channel. In this study, a spatially resolved physical model was developed to simulate an MCEC in a novel hybrid reformer electrolyzer purifier (REP) configuration for high purity hydrogen production from methane and water. REP effectively acts as an electrochemical CO2 purifier of hydrogen. In order to evaluate the performance of REP, a dynamic MCEC stack model was developed based upon previous high temperature molten carbonate fuel cell modeling studies carried out at the National Fuel Cell Research Center at the University of California, Irvine. The current model is capable of capturing both steady state performance and transient behavior of an MCEC stack using established physical models originating from first principals. The model was first verified with REP experimental data at steady state which included spatial temperature profiles. Preliminary results show good agreement with experimental data in terms of spatial distribution of temperature, current density, voltage, and power. The combined effect of steam methane reformation (SMR) and water electrolysis with electrochemical CO2 removal results in 96% dry-basis hydrogen at the cathode outlet of the MCEC. Experimental measurements reported 98% dry-basis hydrogen at the cathode outlet.


Sign in / Sign up

Export Citation Format

Share Document