scholarly journals Amygdalar Endothelin-1 Regulates Pyramidal Neuron Excitability and Affects Anxiety

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ming Chen ◽  
Huan-huan Yan ◽  
Shu Shu ◽  
Lei Pei ◽  
Long-kai Zang ◽  
...  
2011 ◽  
Vol 11 (3) ◽  
pp. 152-156 ◽  
Author(s):  
James H. Cao ◽  
Jinhong Pan ◽  
Hung-Yun Lin ◽  
Faith B. Davis ◽  
Min Zhou ◽  
...  

2018 ◽  
Vol 34 (5) ◽  
pp. 759-768
Author(s):  
Yan-Lin He ◽  
Kai Wang ◽  
Qian-Ru Zhao ◽  
Yan-Ai Mei

2020 ◽  
Author(s):  
Timothy R. Rose ◽  
Ezequiel Marron Fernandez de Velasco ◽  
Baovi N. Vo ◽  
Megan E. Tipps ◽  
Kevin Wickman

ABSTRACTBackgroundDrug-induced neuroadaptations in the prefrontal cortex are thought to underlie impaired executive functions that reinforce addictive behaviors. Repeated cocaine exposure increased layer 5/6 pyramidal neuron excitability in the mouse prelimbic cortex (PL), an adaptation attributable to a suppression of G protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activity. GIRK channel suppression in the PL of drug-naïve mice enhanced the motor-stimulatory effect of cocaine. The impact of cocaine on PL GABA neurons, key pyramidal neuron regulators, and the behavioral relevance of increased PL pyramidal neuron excitability, remain unclear.MethodsThe effect of repeated cocaine on mouse layer 5/6 PL GABA neurons was assessed using slice electrophysiology. Adaptations enhancing PL pyramidal neuron excitability were modeled in drug-naïve mice using persistent viral Cre ablation and acute chemogenetic approaches. The impact of these manipulations on PL-dependent behavior was assessed in motor activity and trace fear conditioning tests.ResultsRepeated cocaine treatment did not impact GIRK channel activity in, or excitability of, layer 5/6 PL GABA neurons. GIRK channel ablation in PL pyramidal neurons enhanced the motor-stimulatory effect of cocaine but did not impact baseline activity or fear learning. In contrast, direct or indirect chemogenetic activation of PL pyramidal neurons increased baseline and cocaine-induced motor activity and disrupted fear learning. These effects were mirrored by chemogenetic activation of PL pyramidal neurons projecting to the ventral tegmental area.ConclusionsManipulations enhancing the excitability of PL pyramidal neurons, including those projecting to the VTA, recapitulate behavioral hallmarks of repeated cocaine exposure.


2011 ◽  
Vol 105 (2) ◽  
pp. 779-792 ◽  
Author(s):  
Sameera Dasari ◽  
Allan T. Gulledge

Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient (“phasic”) mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged (“tonic”) mAChR activation increases CA1 neuron excitability. Both phasic and tonic mAChR activation excites pyramidal neurons in the CA3 region, yet ACh suppresses glutamate release at the CA3-to-CA1 synapse (the Schaffer–collateral pathway). Using mice genetically lacking specific mAChRs (mAChR knockout mice), we identified the mAChR subtypes responsible for cholinergic modulation of hippocampal pyramidal neuron excitability and synaptic transmission. Knockout of M1 receptors significantly reduced, or eliminated, most phasic and tonic cholinergic responses in CA1 and CA3 pyramidal neurons. On the other hand, in the absence of other Gq-linked mAChRs (M3 and M5), M1 receptors proved sufficient for all postsynaptic cholinergic effects on CA1 and CA3 pyramidal neuron excitability. M3 receptors were able to participate in tonic depolarization of CA1 neurons, but otherwise contributed little to cholinergic responses. At the Schaffer–collateral synapse, bath application of the cholinergic agonist carbachol suppressed stratum radiatum–evoked excitatory postsynaptic potentials (EPSPs) in wild-type CA1 neurons and in CA1 neurons from mice lacking M1 or M2 receptors. However, Schaffer–collateral EPSPs were not significantly suppressed by carbachol in neurons lacking M4 receptors. We therefore conclude that M1 and M4 receptors are the major mAChR subtypes responsible for direct cholinergic modulation of the excitatory hippocampal circuit.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0548-19.2021
Author(s):  
Olivia K. Swanson ◽  
Rosa Semaan ◽  
Arianna Maffei

2008 ◽  
Vol 212 (2) ◽  
pp. 415-421 ◽  
Author(s):  
Yuan Fan ◽  
Ping Deng ◽  
Yu-Chi Wang ◽  
Hui-Chen Lu ◽  
Zao C. Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document