chloride homeostasis
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 31)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 11 ◽  
Author(s):  
Gulimirerouzi Fnu ◽  
Georg F. Weber

We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.


2021 ◽  
Author(s):  
Roz Laing ◽  
Stephen R Doyle ◽  
Jennifer McIntyre ◽  
Kirsty Maitland ◽  
Alison Morrison ◽  
...  

The antiparasitic drug ivermectin plays an essential role in human and animal health globally. However, ivermectin resistance is widespread in veterinary helminths and there are growing concerns of sub-optimal responses to treatment in related helminths of humans. Despite decades of research, the genetic mechanisms underlying ivermectin resistance are poorly understood in parasitic helminths. This reflects significant uncertainty regarding the mode of action of ivermectin in parasitic helminths, and the genetic complexity of these organisms; parasitic helminths have large, rapidly evolving genomes and differences in evolutionary history and genetic background can confound comparisons between resistant and susceptible populations. We undertook a controlled genetic cross of a multi-drug resistant and a susceptible reference isolate of Haemonchus contortus, an economically important gastrointestinal nematode of sheep, and ivermectin-selected the F2 population for comparison with an untreated F2 control. RNA-seq analyses of male and female adults of all populations identified high transcriptomic differentiation between parental isolates, which was significantly reduced in the F2, allowing differences associated specifically with ivermectin resistance to be identified. In all resistant populations, there was constitutive upregulation of a single gene, HCON_00155390:cky-1, a putative pharyngeal-expressed transcription factor, in a narrow locus on chromosome V previously shown to be under ivermectin selection. In addition, we detected sex-specific differences in gene expression between resistant and susceptible populations, including constitutive upregulation of a P-glycoprotein, HCON_00162780:pgp-11, in resistant males only. After ivermectin selection, we identified differential expression of genes with roles in neuronal function and chloride homeostasis, which is consistent with an adaptive response to ivermectin-induced hyperpolarisation of neuromuscular cells. Overall, we show the utility of a genetic cross to identify differences in gene expression that are specific to ivermectin selection and provide a framework to better understand ivermectin resistance and recovery in parasitic helminths.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yasmine Belaïdouni ◽  
Diabe Diabira ◽  
Jinwei Zhang ◽  
Jean-Charles Graziano ◽  
Francesca Bader ◽  
...  

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. Mouse models of RTT show reduced expression of the cation-chloride cotransporter KCC2 and altered chloride homeostasis at presymptomatic stages. However, whether these alterations persist to late symptomatic stages has not been studied. Here we assess KCC2 and NKCC1 expressions and chloride homeostasis in the hippocampus of early [postnatal (P) day 30–35] and late (P50–60) symptomatic male Mecp2-null (Mecp2–/y) mice. We found (i) no difference in the relative amount, but an over-phosphorylation, of KCC2 and NKCC1 between wild-type (WT) and Mecp2–/y hippocampi and (ii) no difference in the inhibitory strength, nor reversal potential, of GABAA-receptor-mediated responses in Mecp2–/y CA3 pyramidal neurons compared to WT at any stages studied. Altogether, these data indicate the presence of a functional chloride extrusion mechanism in Mecp2–/y CA3 pyramidal neurons at symptomatic stages.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1316
Author(s):  
Provvidenza M. Abruzzo ◽  
Cristina Panisi ◽  
Marina Marini

In neuronal precursors and immature neurons, the depolarizing (excitatory) effect of γ-Aminobutyric acid (GABA) signaling is associated with elevated [Cl−]i; as brain cells mature, a developmental switch occurs, leading to the decrease of [Cl−]i and to the hyperpolarizing (inhibitory) effect of GABAergic signaling. [Cl−]i is controlled by two chloride co-transporters: NKCC1, which causes Cl− to accumulate into the cells, and KCC2, which extrudes it. The ontogenetic upregulation of the latter determines the above-outlined switch; however, many other factors contribute to the correct [Cl−]i in mature neurons. The dysregulation of chloride homeostasis is involved in seizure generation and has been associated with schizophrenia, Down’s Syndrome, Autism Spectrum Disorder, and other neurodevelopmental disorders. Recently, much effort has been put into developing new drugs intended to inhibit NKCC1 activity, while no attention has been paid to the origin of [Cl−]i dysregulation. Our study examines the pathophysiology of Cl− homeostasis and focuses on the impact of oxidative stress (OS) and inflammation on the activity of Cl− co-transporters, highlighting the relevance of OS in numerous brain abnormalities and diseases. This hypothesis supports the importance of primary prevention during pregnancy. It also integrates the therapeutic framework addressed to restore normal GABAergic signaling by counteracting the alteration in chloride homeostasis in central nervous system (CNS) cells, aiming at limiting the use of drugs that potentially pose a health risk.


Author(s):  
Martina Parrini ◽  
Shovan Naskar ◽  
Micol Alberti ◽  
Ilaria Colombi ◽  
Giovanni Morelli ◽  
...  

2021 ◽  
Author(s):  
Zhijie Ren ◽  
Fenglin Bai ◽  
Jingwen Xu ◽  
Li Wang ◽  
Xiaohan Wang ◽  
...  

SummaryGrain size is determined by the number of cells and cell size of the grain. Regulation of grain size is crucial for improving crop yield. However, the genes and underlying molecular mechanisms controlling grain size remain elusive. Here we report a member of Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) family transporter, BIG RICE GRAIN 1 (BIRG1), negatively regulates the grain size in rice. BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the size of the outer parenchyma layer cells of spikelet hulls is noticeably larger but the cell number is not altered compared with that in the wild-type (WT) grain. When expressed in Xenopus oocytes, BIRG1 exhibits chloride efflux activity. In line with the role of BIRG1 in mediating chloride efflux, the birg1 mutant shows reduced tolerance to salt stress under which the chloride level is toxic. Moreover, the birg1 grains contain higher level of chloride compared to WT grains when grown under normal paddy field. The birg1 roots accumulate more chloride than those of WT under saline condition. Collectively, our findings suggest that BIRG1 functions as a chloride efflux transporter regulating grain size and salt tolerance via controlling chloride homeostasis in rice.


2021 ◽  
Vol 22 (3) ◽  
pp. 1232
Author(s):  
Sunday Solomon Josiah ◽  
Nur Farah Meor Azlan ◽  
Jinwei Zhang

Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl− and K+-Cl− cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
David Astapenko ◽  
Pavel Navratil ◽  
Jiri Pouska ◽  
Vladimir Cerny

Abstract Background This systematic review discusses a clinical physiology aspect of chloride in fluid therapy. Crystalloid solutions are one of the most widely used remedies. While generally used in medicine for almost 190 years, studies focused largely on their safety have only been published since the new millennium. The most widely used solution, normal saline, is most often referred to in this context. Its excessive administration results in hyperchloremic metabolic acidosis with other consequences, including higher mortality rates. Methods Original papers and review articles eligible for developing the present paper were identified by searching online in the electronic MEDLINE database. The keywords searched for included hyperchloremia, hypochloremia, and compound words containing the word “chloride,” infusion therapy, metabolic acidosis, renal failure, and review. Results A total of 21,758 papers published before 31 May 2020 were identified; of this number, 630 duplicates were removed from the list. Upon excluding articles based on their title or abstract, 1850 papers were screened, of which 63 full-text articles were assessed. Conclusions According to the latest medical concepts, dyschloremia (both hyperchloremia and hypochloremia) represents a factor indisputably having a negative effect on selected variables of clinical outcome. As infusion therapy can significantly impact chloride homeostasis of the body, the choice of infusion solutions should always take into account the potentially adverse impact of chloride content on chloremia and organ function.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Camille Dumon ◽  
Yasmine Belaidouni ◽  
Diabe Diabira ◽  
Suzanne M. Appleyard ◽  
Gary A. Wayman ◽  
...  

Abstract The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 activity and is present during a restricted period of postnatal development. This study confirms and extends the role of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of leptin may contribute to neurological disorders.


2020 ◽  
Author(s):  
Camille Dumon ◽  
Yasmine Belaidouni ◽  
Diabe Diabira ◽  
Suzanne Appleyard ◽  
Gary Wayman ◽  
...  

Abstract The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 activity and is present during a restricted period of postnatal development. This study confirms and extends the role of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of leptin may contribute to neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document