scholarly journals Influence of W substitution on crystal structure, phase evolution and microwave dielectric properties of (Na0.5Bi0.5)MoO4 ceramics with low sintering temperature

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Li-Xia Pang ◽  
Di Zhou ◽  
Ze-Ming Qi ◽  
Zhen-Xing Yue
2018 ◽  
Vol 750 ◽  
pp. 996-1002 ◽  
Author(s):  
Xiao-Qiang Song ◽  
Kang Du ◽  
Xian-Zhe Zhang ◽  
Jie Li ◽  
Wen-Zhong Lu ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 1442-1446
Author(s):  
Yue Ming Li ◽  
Zong Yang Shen ◽  
Zhu Mei Wang ◽  
Hua Zhang ◽  
Yan Hong ◽  
...  

The B2O3-CuO oxide mixture (abbreviated as BC) was selected to lower the sintering temperature of (Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3 (abbreviated as CSLST) microwave dielectric ceramics by solid sate reaction technique. The effects of BC doping amounts on the crystal structure, microstructure and microwave dielectric properties of the ceramics were investigated. For the ceramic sample with the composition of CSLST + 5 wt% BC, its sintering temperature was reduced to 1000 °C as compared to 1200 °C for pure CSLST. In addition to the obtained good microwave dielectric properties as follows: εr = 80.4, Q×f = 1380 GHz, τf = -32.89 ×10-6/°C, this ceramic was a desirable high-permittivity microwave dielectric candidate for low-temperature cofired ceramic (LTCC) applications.


2009 ◽  
Vol 66 ◽  
pp. 104-107 ◽  
Author(s):  
Ying Dai ◽  
Yao Sun ◽  
Wen Chen

Willemite ceramics (Zn2SiO4) possess excellent millimeter-wave dielectric properties, but it also has a high sintering temperature above 1300°C by traditional solid-state reaction and relatively large negative τf value. Zn2SiO4 nanoparticles synthesized by Sol–Gel method were used to improve the sintering and dielectric properties of the Zn2SiO4 ceramics. Using the nanoparticles, Zn2SiO4 ceramics can be sintered at a low temperature, 1150°C and exhibited improved microwave dielectric properties of εr =6.62, Q × f=24500 GHz, τf =-59ppm/°C. By adding TiO2 with high positive τf value (+450 ppm/°C) and CuO as sintering aid, near zero τf value and low sintering temperature can be achieved. With 11wt% of TiO2 and 5 wt% of CuO, an εr value of 9.3, a Q × f value of 12200GHz and a τf value of -11 ppm/°C were obtained at 1000°C, confirming the promising potential of the CuO-added TiO2-Zn2SiO4 ceramics as candidate materials for low–temperature cofired ceramic (LTCC) devices.


Sign in / Sign up

Export Citation Format

Share Document