scholarly journals Dynamics and function of CXCR4 in formation of the granule cell layer during hippocampal development

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuka Mimura-Yamamoto ◽  
Hiroshi Shinohara ◽  
Taichi Kashiwagi ◽  
Toru Sato ◽  
Seiji Shioda ◽  
...  
2011 ◽  
Vol 100 (3) ◽  
pp. 82a
Author(s):  
Don Patrick Bischop ◽  
Céline Roussel ◽  
Serge Schiffmann ◽  
David Gall

2020 ◽  
Author(s):  
Kosuke Kataoka ◽  
Andras Bilkei-Gorzo ◽  
Andreas Zimmer ◽  
Toru Asahi

ABSTRACTMitochondrial autophagy (mitophagy) is an essential and evolutionarily conserved process that maintains mitochondrial integrity via the removal of damaged or superfluous mitochondria in eukaryotic cells. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and Parkin promote mitophagy and function in a common signaling pathway. PINK1-mediated ubiquitin phosphorylation at Serine 65 (Ser65-pUb) is a key event in the efficient execution of PINK1/Parkin-dependent mitophagy. However, few studies have used immunohistochemistry to analyze Ser65-pUb in the mouse. Here, we examined the immunohistochemical characteristics of Ser65-pUb in the mouse hippocampus. Some hippocampal cells were Ser65-pUb positive, whereas the remaining cells expressed no or low levels of Ser65-pUb. PINK1 deficiency resulted in a decrease in the density of Ser65-pUb-positive cells, consistent with a previous hypothesis based on in vitro research. Interestingly, Ser65-pUb-positive cells were detected in hippocampi lacking PINK1 expression. The CA3 pyramidal cell layer and the dentate gyrus (DG) granule cell layer exhibited significant reductions in the density of Ser65-pUb-positive cells in PINK1-deficient mice. Moreover, Ser65-pUb immunoreactivity colocalized predominantly with neuronal markers. These findings suggest that Ser65-pUb may serve as a biomarker of in situ PINK1 signaling in the mouse hippocampus; however, the results should be interpreted with caution, as PINK1 deficiency downregulated Ser65-pUb only partially.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2223-2232 ◽  
Author(s):  
Joshua B. Rubin ◽  
Yoojin Choi ◽  
Rosalind A. Segal

Sonic hedgehog promotes proliferation of developing cerebellar granule cells. As sonic hedgehog is expressed in the cerebellum throughout life it is not clear why proliferation occurs only in the early postnatal period and only in the external granule cell layer. We asked whether heparan sulfate proteoglycans might regulate sonic hedgehog-induced proliferation and thereby contribute to the specialized proliferative environment of the external granule cell layer. We identified a conserved sequence within sonic hedgehog that is essential for binding to heparan sulfate proteoglycans, but not for binding to the receptor patched. Sonic hedgehog interactions with heparan sulfate proteoglycans promote maximal proliferation of postnatal day 6 granule cells. By contrast, proliferation of less mature granule cells is not affected by sonic hedgehog-proteoglycan interactions. The importance of proteoglycans for proliferation increases during development in parallel with increasing expression of the glycosyltransferase genes, exostosin 1 and exostosin 2. These data suggest that heparan sulfate proteoglycans, synthesized by exostosins, may be critical determinants of granule cell proliferation.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1435-1442 ◽  
Author(s):  
Paul R. Borghesani ◽  
Jean Michel Peyrin ◽  
Robyn Klein ◽  
Joshua Rubin ◽  
Alexandre R. Carter ◽  
...  

During development of the nervous system, neural progenitors arise in proliferative zones, then exit the cell cycle and migrate away from these zones. Here we show that migration of cerebellar granule cells out of their proliferative zone, the external granule cell layer (EGL), is impaired in Bdnf–/– mice. The reason for impaired migration is that BDNF directly and acutely stimulates granule cell migration. Purified Bdnf–/– granule cells show defects in initiation of migration along glial fibers and in Boyden chamber assays. This phenotype can be rescued by exogenous BDNF. Using time-lapse video microscopy we find that BDNF is acutely motogenic as it stimulates migration of individual granule cells immediately after addition. The stimulation of migration reflects both a chemokinetic and chemotactic effect of BDNF. Collectively, these data demonstrate that BDNF is directly motogenic for granule cells and provides a directional cue promoting migration from the EGL to the internal granule cell layer (IGL). Movies available on-line


2019 ◽  
Vol 25 (6) ◽  
pp. 528-547 ◽  
Author(s):  
Ayda Tavitian ◽  
Wei Song ◽  
Hyman M. Schipper

Hippocampal abnormalities have been heavily implicated in the pathophysiology of schizophrenia. The dentate gyrus of the hippocampus was shown to manifest an immature molecular profile in schizophrenia subjects, as well as in various animal models of the disorder. In this position paper, we advance a hypothesis that this immature molecular profile is accompanied by an identifiable immature morphology of the dentate gyrus granule cell layer. We adduce evidence for arrested maturation of the dentate gyrus in the human schizophrenia-affected brain, as well as multiple rodent models of the disease. Implications of this neurohistopathological signature for current theory regarding the development of schizophrenia are discussed.


2016 ◽  
Vol 114 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Joel S. Benjamin ◽  
Genay O. Pilarowski ◽  
Giovanni A. Carosso ◽  
Li Zhang ◽  
David. L. Huso ◽  
...  

Kabuki syndrome is a Mendelian intellectual disability syndrome caused by mutations in either of two genes (KMT2D and KDM6A) involved in chromatin accessibility. We previously showed that an agent that promotes chromatin opening, the histone deacetylase inhibitor (HDACi) AR-42, ameliorates the deficiency of adult neurogenesis in the granule cell layer of the dentate gyrus and rescues hippocampal memory defects in a mouse model of Kabuki syndrome (Kmt2d+/βGeo). Unlike a drug, a dietary intervention could be quickly transitioned to the clinic. Therefore, we have explored whether treatment with a ketogenic diet could lead to a similar rescue through increased amounts of beta-hydroxybutyrate, an endogenous HDACi. Here, we report that a ketogenic diet in Kmt2d+/βGeo mice modulates H3ac and H3K4me3 in the granule cell layer, with concomitant rescue of both the neurogenesis defect and hippocampal memory abnormalities seen in Kmt2d+/βGeo mice; similar effects on neurogenesis were observed on exogenous administration of beta-hydroxybutyrate. These data suggest that dietary modulation of epigenetic modifications through elevation of beta-hydroxybutyrate may provide a feasible strategy to treat the intellectual disability seen in Kabuki syndrome and related disorders.


Sign in / Sign up

Export Citation Format

Share Document