scholarly journals Unstable, Super Critical CO2–Water Displacement in Fine Grained Porous Media under Geologic Carbon Sequestration Conditions

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
R. Gooya ◽  
A. Silvestri ◽  
A. Moaddel ◽  
M. P. Andersson ◽  
S. L. S. Stipp ◽  
...  
2021 ◽  
Vol 38 (3) ◽  
pp. 127-142
Author(s):  
Florence T. Ling ◽  
Dan A. Plattenberger ◽  
Catherine A. Peters ◽  
Andres F. Clarens

2003 ◽  
Vol 2 (3) ◽  
pp. 287 ◽  
Author(s):  
Curtis M. Oldenburg ◽  
André J. A. Unger

2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Renyi Cao ◽  
Junjie Xu ◽  
Xiaoping Yang ◽  
Renkai Jiang ◽  
Changchao Chen

During oilfield development, there exist multi-cycle gas–water mutual displacement processes. This means that a cycling process such as water driving gas–gas driving water–water driving gas is used for the operation of injection and production in a single well (such as foam huff and puff in single well or water-bearing gas storage). In this paper, by using core- and micro-pore scales model, we study the distribution of gas and water and the flow process of gas-water mutual displacement. We find that gas and water are easier to disperse in the porous media and do not flow in continuous gas and water phases. The Jamin effect of the gas or bubble becomes more severe and makes the flow mechanism of multi-cycle gas–water displacement different from the conventional water driving gas or gas driving water processes. Based on experiments of gas–water mutual displacement, the changing mechanism of gas–water displacement is determined. The results indicate that (1) after gas–water mutual displacement, the residual gas saturation of a gas–water coexistence zone becomes larger and the two-phase zone becomes narrower, (2) increasing the number of injection and production cycles causes the relative permeability of gas to increase and relative permeability for water to decrease, (3) it becomes easier for gas to intrude and the invaded water becomes more difficult to drive out and (4) the microcosmic fluid distribution of each stage have a great difference, which caused the two-phase region becomes narrower and effective volume of gas storage becomes narrower.


Author(s):  
Hamed Mahdipanah ◽  
Askari Tashakori ◽  
Samad Emamgholizadeh ◽  
Eisa Maroufpoor

Abstract Dispersivity is a measurable parameter in soil porous media that is used for studying the transport of contaminants to groundwater. The value of this parameter depends on various factors, including the kind of porous media (homogeneous or heterogeneous), flow velocity, initial contaminant concentration, travel distance, and sampling method. A physical model with dimensions of 0.10 m in width, 0.80 m in height, and 1.10 m in length was constructed to investigate the effects of these parameters on the dispersivity value. The stratified soil consisted of three 20-cm-thick layers containing fine-grained, medium-grained, and coarse-grained soil. Sodium chloride solutions with electrical conductivity values of 10, 14, and 19 dS/m were used as the contaminants. Flow was forced through the layered heterogeneous soils at three discharge velocities of 17.58, 22.02, and 26.18 × 10−5 m/s. The point and mixed sampling methods were used. The results indicated that the soil dispersivity values in the layered heterogeneous soils and homogeneous soil were influenced by contaminant concentration, flow velocity, and travel distance. Moreover, the dispersivity values obtained by point sampling were lower than those obtained using the mixed sampling method, and the mean dispersivity value in the layered heterogeneous soils was lower than that of the homogeneous soil.


Sign in / Sign up

Export Citation Format

Share Document