scholarly journals Diurnal motor activity and “sunbathing” behaviour in crested porcupine (Hystrix cristata L., 1758)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Francesca Coppola ◽  
Giuseppe Vecchio ◽  
Antonio Felicioli

Abstract The crested porcupine is a mainly nocturnal mammal that shows both moonlight avoidance and some diurnal motor activity, the latter as an extension of its night-time foraging behaviour. Furthermore, a peculiar daytime behaviour, described as “sunbathing”, was reported as episodic in H. africaeaustralis. Between 2016 and 2019 a camera-trapping monitoring was performed within 10 porcupine settlements in order to detect the diurnal motor activity and to verify and describe the sunbathing behaviour in crested porcupine. Out of 1,003 trap days, a total of 148 events of diurnal motor activity were recorded. The diurnal motor activity occurred throughout the year mainly between December and June from 15:00 to 16:00, with no statistical difference between cubs, youngsters and adults. The sunbathing behaviour was detected for a total of 36 episodes recorded. Sunbathing was performed mainly by cubs. The sunbathing behaviour occurred only between April and June during the hottest hours of the day (11:00 to 12:00). Diurnal motor activity and sunbathing behaviour of porcupine are discussed in relation to food availability and porcupine physiology.

2008 ◽  
Vol 5 (1) ◽  
pp. 77-80 ◽  
Author(s):  
T Fuchs ◽  
D Maury ◽  
F.R Moore ◽  
V.P Bingman

Many species of typically diurnal songbirds experience sleep loss during the migratory seasons owing to their nocturnal migrations. However, despite substantial loss of sleep, nocturnally migrating songbirds continue to function normally with no observable effect on their behaviour. It is unclear if and how avian migrants compensate for sleep loss. Recent behavioural evidence suggests that some species may compensate for lost night-time sleep with short, uni- and bilateral ‘micro-naps’ during the day. We provide electrophysiological evidence that short episodes of sleep-like daytime behaviour (approx. 12 s) are accompanied by sleep-like changes in brain activity in an avian migrant. Furthermore, we present evidence that part of this physiological brain response manifests itself as unihemispheric sleep, a state during which one brain hemisphere is asleep while the other hemisphere remains essentially awake. Episodes of daytime sleep may represent a potent adaptation to the challenges of avian migration and offer a plausible explanation for the resilience to sleep loss in nocturnal migrants.


2020 ◽  
Vol 33 (4) ◽  
Author(s):  
Andrea Viviano ◽  
Giovanni Amori ◽  
Luca Luiselli ◽  
Horst Oebel ◽  
Farid Bahleman ◽  
...  

The assessment of habitat selection and temporal patterns of activity rhythms is paramount for wildlife conservation. Studies on behavioural ecology of wild mammals are particularly challenging in tropical areas, mostly when involving rare or elusive species. Despite being a common species in Italy, the crested porcupine Hystrix cristata is threatened of extinction throughout most of its sub-Saharan range. All available information on the ecology of this species has been collected in Italy, whereas no data is present in the scientific literature on spatiotemporal behaviour of this large rodent in Africa. In this work, we attempted to determine habitat selection and temporal patterns of activity rhythms of the crested porcupine in northern Benin and neighbouring countries, through intensive camera-trapping. We collected a total of 146 records of crested porcupine, 91 in the dry season (October-March) and 55 in the rainy season (April-September). Porcupines used most habitats in proportion to their local availability, while selecting rock outcrop formations (possibly used as shelter sites) and avoiding open areas, wetlands and gallery forests. A mostly nocturnal behaviour was confirmed throughout the year, with some diurnal activity at the start and at the end of the rainy season. The importance of rains in determining birth peak has been also showed, with juvenile individuals always observed at the start and at the end of the rainy season. Full moon always inhibited activity of this large rodent, most likely evolved as an antipredatory behaviour to limit encounters with potential predators (common leopard Panthera pardus, spotted hyaena Crocuta crocuta and honey badger Mellivora capensis) and humans. Poaching pressure towards porcupines in West Africa is strong. Porcupines are killed for the traditional medicine, for their meat and because they are widely considered as a crop pest. This assessment should therefore be used as a basic tool to design conservation plans to preserve this rodent species in its native range.


2012 ◽  
Vol 146 (1) ◽  
pp. 88
Author(s):  
F. Morandi ◽  
R. Galuppi ◽  
M. Delogu ◽  
L.J. Lowenstine ◽  
C. Benazzi ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 985-991 ◽  
Author(s):  
Giovanni Cilia ◽  
Fabrizio Bertelloni ◽  
Francesca Coppola ◽  
Barbara Turchi ◽  
Claudia Biliotti ◽  
...  

Author(s):  
Francesca Coppola ◽  
Giovanni Cilia ◽  
Fabrizio Bertelloni ◽  
Lucia Casini ◽  
Enrico D’Addio ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
pp. 20190743 ◽  
Author(s):  
Pauline Billard ◽  
Alexandra K. Schnell ◽  
Nicola S. Clayton ◽  
Christelle Jozet-Alves

Some animals optimize their foraging activity by learning and memorizing food availability, in terms of quantity and quality, and adapt their feeding behaviour accordingly. Here, we investigated whether cuttlefish flexibly adapt their foraging behaviour according to the availability of their preferred prey. In Experiment 1, cuttlefish switched from a selective to an opportunistic foraging strategy (or vice versa ) when the availability of their preferred prey at night was predictable versus unpredictable. In Experiment 2, cuttlefish exhibited day-to-day foraging flexibility, in response to experiencing changes in the proximate future (i.e. preferred prey available on alternate nights). In Experiment 1, the number of crabs eaten during the day decreased when shrimp (i.e. preferred food) were predictably available at night, while the consumption of crabs during the day was maintained when shrimp availability was unpredictable. Cuttlefish quickly shifted from one strategy to the other, when experimental conditions were reversed. In Experiment 2, cuttlefish only reduced their consumption of crabs during the daytime when shrimps were predictably available the following night. Their daytime foraging behaviour appeared dependent on shrimps' future availability. Overall, cuttlefish can adopt dynamic and flexible foraging behaviours including selective, opportunistic and future-dependent strategies, in response to changing foraging conditions.


Sign in / Sign up

Export Citation Format

Share Document