scholarly journals Study on method to achieve high transmutation of LLFP using fast reactor

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Toshio Wakabayashi ◽  
Yoshiaki Tachi ◽  
Makoto Takahashi ◽  
Satoshi Chiba ◽  
Naoyuki Takaki

AbstractThe purpose of this study is to clarify the method to achieve high transmutation rates of four long-lived fission products (79Se, 99Tc, 107Pd, and 129I) using a fast reactor. New LLFP target assemblies were invented in consideration of the suppression of thermal spikes in adjacent fuel assemblies by combining YD2 and YH2 moderators or using a thermal neutron filter material. It was clarified that the high transmutation rate of about 8%/year was achieved, if the new LLFP target assemblies of 4 nuclides were loaded in the blanket region of the sodium cooled, MOX fueled fast reactor. The feasibility of the LLFP transmutation target was clarified through experiments on material properties and fabrication of the LLFP target, YH2 and YD2 moderators.

Kerntechnik ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 45-49
Author(s):  
N. V. Maslov ◽  
E. I. Grishanin ◽  
P. N. Alekseev

Abstract This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.


2003 ◽  
Vol 30 (18) ◽  
pp. 1905-1917 ◽  
Author(s):  
M. Adib ◽  
N. Habib ◽  
A. Ashry ◽  
M. Fathalla

2021 ◽  
Vol 68 (2) ◽  
pp. 152-158
Author(s):  
E. V. Usov ◽  
V. I. Chukhno ◽  
I. A. Klimonov ◽  
V. D. Ozrin ◽  
N. A. Mosunova ◽  
...  

2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


2019 ◽  
Vol 135 ◽  
pp. 01096 ◽  
Author(s):  
Elena Kastarnova ◽  
Vladimir Orobets ◽  
Valeria Shakhova ◽  
Olga Sevostyanova ◽  
Natalya Kizilova

The article presents the results of studying the physicochemical properties of exosome preparations obtained by ultrafiltration, which indicate a high degree of the composition and properties dependence of the obtained product on the material of the filters used. Quantitative determination of proteins and nucleic acids in exosome samples using UPN-50 filters allows us to conclude that the content of the main impurity compounds in the preparation is significantly reduced compared to dispersions obtained using filters with pore sizes of 220 and 450 nm. Analysis of flow cytometry data made it possible to demonstrate that when using the UPN-50 filter, an increase in the contribution to the dispersion of all types of fractions of non-exosomal size was observed, the appearance of which can result from fraction destruction associated with pore size or filter material properties. drying of the dispersion was observed in the studied exosome samples. Fraction sizes ranged from 40 to 450 nm (an average of about 200 nm). Exosomes from the entire variety of membrane vesicles are fractions that have the most suitable characteristics that allow them to be used as a nanoscale drug delivery vehicle while ensuring the necessary quality control of the drug at the sample preparation stage.


2012 ◽  
Vol 7 ◽  
pp. 84-91
Author(s):  
M. Lacroix ◽  
N. Simon ◽  
C. Perrais ◽  
J.P. Simonin ◽  
S. Trambaud

Sign in / Sign up

Export Citation Format

Share Document