scholarly journals Shared and Independent Genetic Basis of Resistance to Bt Toxin Cry2Ab in Two Strains of Pink Bollworm

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jeffrey A. Fabrick ◽  
Dannialle M. LeRoy ◽  
Gopalan C. Unnithan ◽  
Alex J. Yelich ◽  
Yves Carrière ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeffrey A. Fabrick ◽  
Dannialle M. LeRoy ◽  
Lolita G. Mathew ◽  
Yidong Wu ◽  
Gopalan C. Unnithan ◽  
...  

AbstractCrops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have many benefits and are important globally for managing insect pests. However, the evolution of pest resistance to Bt crops reduces their benefits. Understanding the genetic basis of such resistance is needed to better monitor, manage, and counter pest resistance to Bt crops. Previous work shows that resistance to Bt toxin Cry2Ab is associated with mutations in the gene encoding the ATP-binding cassette protein ABCA2 in lab- and field-selected populations of the pink bollworm (Pectinophora gossypiella), one of the world’s most destructive pests of cotton. Here we used CRISPR/Cas9 gene editing to test the hypothesis that mutations in the pink bollworm gene encoding ABCA2 (PgABCA2) can cause resistance to Cry2Ab. Consistent with this hypothesis, introduction of disruptive mutations in PgABCA2 in a susceptible strain of pink bollworm increased the frequency of resistance to Cry2Ab and facilitated creation of a Cry2Ab-resistant strain. All Cry2Ab-resistant individuals tested in this study had disruptive mutations in PgABCA2. Overall, we found 17 different disruptive mutations in PgABCA2 gDNA and 26 in PgABCA2 cDNA, including novel mutations corresponding precisely to single-guide (sgRNA) sites used for CRISPR/Cas9. Together with previous results, these findings provide the first case of practical resistance to Cry2Ab where evidence identifies a specific gene in which disruptive mutations can cause resistance and are associated with resistance in field-selected populations.


2004 ◽  
Vol 97 (3) ◽  
pp. 721-726 ◽  
Author(s):  
Bruce E. Tabashnik ◽  
Yong-Biao Liu ◽  
Devika C. Unnithan ◽  
Yves Carrière ◽  
Timothy J. Dennehy ◽  
...  

2017 ◽  
Vol 114 (21) ◽  
pp. 5413-5418 ◽  
Author(s):  
Peng Wan ◽  
Dong Xu ◽  
Shengbo Cong ◽  
Yuying Jiang ◽  
Yunxin Huang ◽  
...  

Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacteriumBacillus thuringiensis(Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by crossing transgenic Bt plants with conventional non-Bt plants and then crossing the resulting first-generation (F1) hybrid progeny and sowing the second-generation (F2) seeds. This strategy yields a random mixture within fields of three-quarters of plants that produce Bt toxin and one-quarter that does not. We hypothesized that the non-Bt plants in this mixture promote survival of susceptible insects, thereby delaying evolution of resistance. To test this hypothesis, we compared predictions from computer modeling with data monitoring pink bollworm (Pectinophora gossypiella) resistance to Bt toxin Cry1Ac produced by transgenic cotton in an 11-y study at 17 field sites in six provinces of China. The frequency of resistant individuals in the field increased before this strategy was widely deployed and then declined after its widespread adoption boosted the percentage of non-Bt cotton plants in the region. The correspondence between the predicted and observed outcomes implies that this strategy countered evolution of resistance. Despite the increased percentage of non-Bt cotton, suppression of pink bollworm was sustained. Unlike other resistance management tactics that require regulatory intervention, growers adopted this strategy voluntarily, apparently because of advantages that may include better performance as well as lower costs for seeds and insecticides.


2019 ◽  
Vol 76 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jeffrey A Fabrick ◽  
Lolita G Mathew ◽  
Dannialle M LeRoy ◽  
J Joe Hull ◽  
Gopalan C Unnithan ◽  
...  
Keyword(s):  

2019 ◽  
Vol 158 ◽  
pp. 54-60 ◽  
Author(s):  
Shengyun Li ◽  
Fiaz Hussain ◽  
Gopalan C. Unnithan ◽  
Shuanglin Dong ◽  
Zain UlAbdin ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 186 ◽  
Author(s):  
Ling Wang ◽  
Yuemin Ma ◽  
Xueqin Guo ◽  
Peng Wan ◽  
Kaiyu Liu ◽  
...  

Insecticidal proteins from Bacillus thuringiensis (Bt) are widely used to control insect pests, but their efficacy is reduced when pests evolve resistance. We report on a novel allele (r16) of the cadherin gene (PgCad1) in pink bollworm (Pectinophora gossypiella) associated with resistance to Bt toxin Cry1Ac, which is produced by transgenic cotton. The r16 allele isolated from a field population in China has 1545 base pairs of a degenerate transposon inserted in exon 20 of PgCad1, which generates a mis-spliced transcript containing a premature stop codon. A strain homozygous for r16 had 300-fold resistance to Cry1Ac, 2.6-fold cross-resistance to Cry2Ab, and completed its life cycle on transgenic Bt cotton producing Cry1Ac. Inheritance of Cry1Ac resistance was recessive and tightly linked with r16. Compared with transfected insect cells expressing wild-type PgCad1, cells expressing r16 were less susceptible to Cry1Ac. Recombinant cadherin protein was transported to the cell membrane in cells transfected with the wild-type PgCad1 allele, but not in cells transfected with r16. Cadherin occurred on brush border membrane vesicles (BBMVs) in the midgut of susceptible larvae, but not resistant larvae. These results imply that the r16 allele mediates Cry1Ac resistance in pink bollworm by interfering with the localization of cadherin.


2002 ◽  
Vol 95 (5) ◽  
pp. 1018-1026 ◽  
Author(s):  
Bruce E. Tabashnik ◽  
Yong-Biao Liu ◽  
Timothy J. Dennehy ◽  
Maria A. Sims ◽  
Mark S. Sisterson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document