shared genetic
Recently Published Documents


TOTAL DOCUMENTS

714
(FIVE YEARS 312)

H-INDEX

51
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Joanna von Berg ◽  
Michelle ten Dam ◽  
Sander W. van der Laan ◽  
Jeroen de Ridder

Pleiotropic SNPs are associated with multiple traits. Such SNPs can help pinpoint biological processes with an effect on multiple traits or point to a shared etiology between traits. We present PolarMorphism, a new method for the identification of pleiotropic SNPs from GWAS summary statistics. PolarMorphism can be readily applied to more than two traits or whole trait domains. PolarMorphism makes use of the fact that trait-specific SNP effect sizes can be seen as Cartesian coordinates and can thus be converted to polar coordinates r (distance from the origin) and theta (angle with the Cartesian x-axis). r describes the overall effect of a SNP, while theta describes the extent to which a SNP is shared. r and theta are used to determine the significance of SNP sharedness, resulting in a p-value per SNP that can be used for further analysis. We apply PolarMorphism to a large collection of publicly available GWAS summary statistics enabling the construction of a pleiotropy network that shows the extent to which traits share SNPs. This network shows how PolarMorphism can be used to gain insight into relationships between traits and trait domains. Furthermore, pathway analysis of the newly discovered pleiotropic SNPs demonstrates that analysis of more than two traits simultaneously yields more biologically relevant results than the combined results of pairwise analysis of the same traits. Finally, we show that PolarMorphism is more efficient and more powerful than previously published methods.


2022 ◽  
Vol 11 (1) ◽  
pp. 12-22
Author(s):  
Fuquan Zhang ◽  
Shuquan Rao ◽  
Ancha Baranova

Aims Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Methods Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases. Results MDD has a significant genetic correlation with OA (rg = 0.29) and the two diseases share a considerable proportion of causal variants. Mendelian randomization analysis indicates that genetic liability to MDD has a causal effect on OA (bxy = 0.24) and genetic liability to OA conferred a causal effect on MDD (bxy = 0.20). Cross-trait meta-analyses identified 29 shared genomic loci between MDD and OA. Together with fine-mapping of transcriptome-wide association signals, our results suggest that Estrogen Receptor 1 ( ESR1), SRY-Box Transcription Factor 5 ( SOX5), and Glutathione Peroxidase 1 ( GPX1) may have therapeutic implications for both MDD and OA. Conclusion The study reveals substantial shared genetic liability between MDD and OA, which may confer risk for one another. Our findings provide a novel insight into phenotypic relationships between MDD and OA. Cite this article: Bone Joint Res 2022;11(1):12–22.


Author(s):  
Chunyu Li ◽  
Tianmi Yang ◽  
Ruwei Ou ◽  
Huifang Shang

Epidemiological and clinical studies have suggested comorbidity between schizophrenia and several neurodegenerative disorders. However, little is known whether there exists shared genetic architecture. To explore their relationship from a genetic and transcriptomic perspective, we applied polygenic and linkage disequilibrium-informed methods to examine the genetic correlation between schizophrenia and amyotrophic lateral sclerosis (ALS), Parkinson’s disease, Alzheimer’s disease and frontotemporal dementia. We further combined genome-wide association summary statistics with large-scale transcriptomic datasets, to identify putative shared genes and explore related pathological tissues. We identified positive and significant correlation between schizophrenia and ALS at genetic (correlation 0.22; 95% CI: 0.16–0.28; p = 4.00E-04) and transcriptomic (correlation 0.08; 95% CI: 0.04–0.11; p = 0.034) levels. We further demonstrated that schizophrenia- and ALS-inferred gene expression overlap significantly in four tissues including skin, small intestine, brain cortex and lung, and highlighted three genes, namely GLB1L3, ZNHIT3 and TMEM194A as potential mediators of the correlation between schizophrenia and ALS. Our findings revealed overlapped gene expression profiles in specific tissues between schizophrenia and ALS, and identified novel potential shared genes. These results provided a better understanding for the pleiotropy of schizophrenia, and paved way for future studies to further elucidate the molecular drivers of schizophrenia.


2021 ◽  
Vol 23 ◽  
Author(s):  
Pei He ◽  
Rong- Rong Cao ◽  
Fei- Yan Deng ◽  
Shu- Feng Lei

Background: Immune and skeletal systems physiologically and pathologically interact with each other. The immune and skeletal diseases may share potential pleiotropic genetics factors, but the shared specific genes are largely unknown Objective: This study aimed to investigate the overlapping genetic factors between multiple diseases (including rheumatoid arthritis (RA), psoriasis, osteoporosis, osteoarthritis, sarcopenia and fracture) Methods: The canonical correlation analysis (metaCCA) approach was used to identify the shared genes for six diseases by integrating genome-wide association study (GWAS)-derived summary statistics. Versatile Gene-based Association Study (VEGAS2) method was further applied to refine and validate the putative pleiotropic genes identified by metaCCA. Results: About 157 (p<8.19E-6), 319 (p<3.90E-6) and 77 (p<9.72E-6) potential pleiotropic genes were identified shared by two immune disease, four skeletal diseases, and all of the six diseases, respectively. The top three significant putative pleiotropic genes shared by both immune and skeletal diseases, including HLA-B, TSBP1 and TSBP1-AS1 (p<E-300) were located in the major histocompatibility complex (MHC) region. Nineteen of 77 putative pleiotropic genes identified by metaCCA analysis were associated with at least one disease in the VEGAS2 analysis. Specifically, majority (18) of these 19 putative validated pleiotropic genes were associated with RA. Conclusion: The metaCCA method identified some pleiotropic genes shared by the immune and skeletal diseases. These findings help to improve our understanding of the shared genetic mechanisms and signaling pathways underlying immune and skeletal diseases.


2021 ◽  
Author(s):  
Gulnara R. Svishcheva ◽  
Evgeny S. Tiys ◽  
Elizaveta E. Elgaeva ◽  
Sofia G. Feoktistova ◽  
Paul R. H. J. Timmers ◽  
...  

We propose a novel effective framework for analysis of the shared genetic background for a set of genetically correlated traits using SNP-level GWAS summary statistics. This framework called SHAHER is based on the construction of a linear combination of traits by maximizing the proportion of its genetic variance explained by the shared genetic factors. SHAHER requires only full GWAS summary statistics and matrices of genetic and phenotypic correlations between traits as inputs. Our framework allows both shared and unshared genetic factors to be to effectively analyzed. We tested our framework using simulation studies, compared it with previous developments, and assessed its performance using three real datasets: anthropometric traits, psychiatric conditions and lipid concentrations. SHAHER is versatile and applicable to summary statistics from GWASs with arbitrary sample sizes and sample overlaps, allows incorporation of different GWAS models (Cox, linear and logistic) and is computationally fast.


Author(s):  
Melody Kasher ◽  
Maxim B. Freidin ◽  
Frances MK Williams ◽  
Stacey S. Cherny ◽  
Ida Malkin ◽  
...  

2021 ◽  
Author(s):  
Richard J Allen ◽  
Beatriz Guillen-Guio ◽  
Emma Croot ◽  
Luke M Kraven ◽  
Samuel Moss ◽  
...  

AbstractGenome-wide association studies (GWAS) of coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) have identified genetic loci associated with both traits, suggesting possible shared biological mechanisms. Using updated GWAS of COVID-19 and IPF, we evaluated the genetic overlap between these two diseases and identified four genetic loci (including one novel) with likely shared causal variants between severe COVID-19 and IPF. Although there was a positive genetic correlation between COVID-19 and IPF, two of these four shared genetic loci had an opposite direction of effect. IPF-associated genetic variants related to telomere dysfunction and spindle assembly showed no association with COVID-19 phenotypes. Together, these results suggest there are both shared and distinct biological processes driving IPF and severe COVID-19 phenotypes.


2021 ◽  
pp. 1-11
Author(s):  
Joeri J. Meijsen ◽  
Hanyang Shen ◽  
Mytilee Vemuri ◽  
Natalie L. Rasgon ◽  
Karestan C. Koenen ◽  
...  

Abstract Background Women experience major depression and post-traumatic stress disorder (PTSD) approximately twice as often as men. Estrogen is thought to contribute to sex differences in these disorders, and reduced estrogen is also known to be a key driver of menopause symptoms such as hot flashes. Moreover, estrogen is used to treat menopause symptoms. In order to test for potential shared genetic influences between menopause symptoms and psychiatric disorders, we conducted a genome-wide association study (GWAS) of estrogen medication use (as a proxy for menopause symptoms) in the UK Biobank. Methods The analysis included 232 993 women aged 39–71 in the UK Biobank. The outcome variable for genetic analyses was estrogen medication use, excluding women using hormonal contraceptives. Trans-ancestry GWAS meta-analyses were conducted along with genetic correlation analyses on the European ancestry GWAS results. Hormone usage was also tested for association with depression and PTSD. Results GWAS of estrogen medication use (compared to non-use) identified a locus in the TACR3 gene, which was previously linked to hot flashes in menopause [top rs77322567, odds ratio (OR) = 0.78, p = 7.7 × 10−15]. Genetic correlation analyses revealed shared genetic influences on menopause symptoms and depression (rg = 0.231, s.e.= 0.055, p = 2.8 × 10−5). Non-genetic analyses revealed higher psychiatric symptoms scores among women using estrogen medications. Conclusions These results suggest that menopause symptoms have a complex genetic etiology which is partially shared with genetic influences on depression. Moreover, the TACR3 gene identified here has direct clinical relevance; antagonists for the neurokinin 3 receptor (coded for by TACR3) are effective treatments for hot flashes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Agneesh Barua ◽  
Ivan Koludarov ◽  
Alexander S. Mikheyev

Abstract Background Evolution can occur with surprising predictability when organisms face similar ecological challenges. For most traits, it is difficult to ascertain whether this occurs due to constraints imposed by the number of possible phenotypic solutions or because of parallel responses by shared genetic and regulatory architecture. Exceptionally, oral venoms are a tractable model of trait evolution, being largely composed of proteinaceous toxins that have evolved in many tetrapods, ranging from reptiles to mammals. Given the diversity of venomous lineages, they are believed to have evolved convergently, even though biochemically similar toxins occur in all taxa. Results Here, we investigate whether ancestral genes harbouring similar biochemical activity may have primed venom evolution, focusing on the origins of kallikrein-like serine proteases that form the core of most vertebrate oral venoms. Using syntenic relationships between genes flanking known toxins, we traced the origin of kallikreins to a single locus containing one or more nearby paralogous kallikrein-like clusters. Additionally, phylogenetic analysis of vertebrate serine proteases revealed that kallikrein-like toxins in mammals and reptiles are genetically distinct from non-toxin ones. Conclusions Given the shared regulatory and genetic machinery, these findings suggest that tetrapod venoms evolved by co-option of proteins that were likely already present in saliva. We term such genes ‘toxipotent’—in the case of salivary kallikreins they already had potent vasodilatory activity that was weaponized by venomous lineages. Furthermore, the ubiquitous distribution of kallikreins across vertebrates suggests that the evolution of envenomation may be more common than previously recognized, blurring the line between venomous and non-venomous animals.


Sign in / Sign up

Export Citation Format

Share Document