bt toxin
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 49)

H-INDEX

30
(FIVE YEARS 5)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1091
Author(s):  
Lei Xiong ◽  
Zhaoxia Liu ◽  
Lingling Shen ◽  
Chao Xie ◽  
Min Ye ◽  
...  

The diamondback moth, Plutella xylostella, is a lepidopteran insect that mainly harms cruciferous vegetables, with strong resistance to a variety of agrochemicals, including Bacillus thuringiensis (Bt) toxins. This study intended to screen genes associated with Bt resistance in P. xylostella by comparing the midgut transcriptome of Cry1Ac-susceptible and -resistant strains together with two toxin-treated strains 24 h before sampling. A total of 12 samples were analyzed by BGISEQ-500, and each sample obtained an average of 6.35 Gb data. Additionally, 3284 differentially expressed genes (DEGs) were identified in susceptible and resistant strains. Among them, five DEGs for cadherin, 14 for aminopeptidase, zero for alkaline phosphatase, 14 for ATP binding cassette transport, and five heat shock proteins were potentially involved in resistance to Cry1Ac in P. xylostella. Furthermore, DEGs associated with “binding”, “catalytic activity”, “cellular process”, “metabolic process”, and “cellular anatomical entity” were more likely to be responsible for resistance to Bt toxin. Thus, together with other omics data, our results will offer prospective genes for the development of Bt resistance, thereby providing a brand new reference for revealing the resistance mechanism to Bt of P. xylostella.


2021 ◽  
Author(s):  
Kyle M Benowitz ◽  
Carson W Allan ◽  
Benjamin A Degain ◽  
Xianchun Li ◽  
Jeffrey A Fabrick ◽  
...  

Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bt toxins can improve resistance monitoring, resistance management, and design of new insecticides. Here, we investigated the genetic basis of resistance to Bt toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250kb QTL on chromosome 13 that was strongly associated with resistance in a strain of H. zea that had been selected for resistance in the field and lab. This QTL contains no genes with a previously reported role in resistance or susceptibility to Bt toxins. However, within this QTL, we discovered a premature stop codon in a kinesin gene. We hypothesize that this mutation contributes to resistance. The results indicate the mutation on chromosome 13 was necessary but not sufficient for resistance, and therefore conclude that mutations in more than one gene contributed to resistance. Moreover, we found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance and extend the list of genes contributing to pest resistance to Bt toxins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eliana Valencia-Lozano ◽  
Jose Luis Cabrera-Ponce ◽  
Juan C. Noa-Carrazana ◽  
Jorge E. Ibarra

Coffea spp. are tropical plants used for brewing beverages from roasted and grounded seeds, the favorite drink in the world. It is the most important commercial crop plant and the second most valuable international commodity after oil. Global coffee trade relies on two Coffea species: C. arabica L. (arabica coffee) comprising 60% and C. canephora (robusta) comprising the remaining 40%. Arabica coffee has lower productivity and better market price than robusta. Arabica coffee is threatened by disease (i.e., coffee leaf rust), pests [i.e., Hypothenemus hampei or coffee berry borer (CBB) and nematodes], and susceptibility to climate change (i.e., drought and aluminum toxicity). Plant biotechnology by means of tissue culture inducing somatic embryogenesis (SE) process, genetic transformation, and genome editing are tools that can help to solve, at least partially, these problems. This work is the continuation of a protocol developed for stable genetic transformation and successful plant regeneration of arabica coffee trees expressing the Bacillus thuringiensis (Bt) toxin Cry10Aa to induce CBB resistance. A highly SE line with a high rate of cell division and conversion to plants with 8-month plant regeneration period was produced. To validate this capability, gene expression analysis of master regulators of SE, such as BABY BOOM (BBM), FUS3, and LEC1, embryo development, such as EMB2757, and cell cycle progression, such as ETG1 and MCM4, were analyzed during induction and propagation of non-competent and highly competent embryogenic lines. The particle bombardment technique was used to generate stable transgenic lines after 3 months under selection using hygromycin as selectable marker, and 1 month in plant regeneration. Transgenic trees developed fruits after 2 years and demonstrated expression of the Bt toxin ranging from 3.25 to 13.88 μg/g fresh tissue. Bioassays with transgenic fruits on CBB first instar larvae and adults induced mortalities between 85 and 100% after 10 days. In addition, transgenic fruits showed a seed damage lower than 9% compared to 100% of control fruits and adult mortality. This is the first report on stable transformation and expression of the Cry10Aa protein in coffee plants with the potential to control CBB.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 618
Author(s):  
Fei Yang ◽  
David L. Kerns ◽  
Nathan S. Little ◽  
José C. Santiago González ◽  
Bruce E. Tabashnik

Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa is the only Bt toxin produced by Bt corn and cotton that remains effective against some populations of this polyphagous lepidopteran pest. Here we evaluated H. zea resistance to Vip3Aa using diet bioassays to test 42,218 larvae from three lab strains and 71 strains derived from the field during 2016 to 2020 in Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Relative to the least susceptible of the three lab strains tested (BZ), susceptibility to Vip3Aa of the field-derived strains decreased significantly from 2016 to 2020. Relative to another lab strain (TM), 7 of 16 strains derived from the field in 2019 were significantly resistant to Vip3Aa, with up to 13-fold resistance. Susceptibility to Vip3Aa was significantly lower for strains derived from Vip3Aa plants than non-Vip3Aa plants, providing direct evidence of resistance evolving in response to selection by Vip3Aa plants in the field. Together with previously reported data, the results here convey an early warning of field-evolved resistance to Vip3Aa in H. zea that supports calls for urgent action to preserve the efficacy of this toxin.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 718
Author(s):  
Carmen López ◽  
Pilar Muñoz ◽  
Daniela Zanga ◽  
Patricia Sarai Girón-Calva ◽  
Matilde Eizaguirre

Serious malnutrition problems occur in developing countries where people’s diets are mainly based on staple crops. To alleviate this, high-production crops are being developed that are better adapted to climate change, enriched in micronutrients and vitamins, or resistant to pests. In some cases, new varieties have been developed with several of the characteristics mentioned above, such as biofortified and pest-resistant crops. The development of biofortified Bacillus thuringiensis (Bt) crops raises the question of whether vitamin enrichment of Bt crops can in any way favor those pests that are not very susceptible to the Bt toxin that feed on these crops, such as Helicoverpa armigera (Hübner) or Mythimna unipuncta (Haworth) (Lepidoptera: Noctuidae). In this study, the response to a Bt diet enriched with vitamins A (β-carotene) and C (ascorbic acid) was somewhat different between the two species. M. unipuncta was less sensitive to the toxin than H. armigera, although the ingestion of the Bt diet resulted in oxidative stress (longer larval development and lower pupal weight) which was not mitigated by the vitamins. However, the two vitamins reduced the mortality of H. armigera larvae fed on a Bt-enriched diet; in addition, ß-carotene reduced the activity of the antioxidant glutathione S-transferase (GST) of both species, suggesting it has an antioxidant role. The results obtained here indicate that biofortified Bt crops will not favor the development of H. armigera very much and will not affect M. unipuncta’s development at all, although the effect of the increase in vitamins may be very variable and should be studied for each specific phytophagous.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 443
Author(s):  
Guillaume Tetreau

Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits of the resolution attainable, now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, I present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, I develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.


2021 ◽  
Author(s):  
Martin Raspor ◽  
Aleksandar Cingel

Significant limitations in potato production are crop loss due to the damage made by insect pests, and the cost of enormous amount of chemicals, harmful to humans and environment, extensively used in their control. As an alternative, development of genetically modified potato offered possibility for pest management in a more sustainable, environmentally friendly way. Over the past 30 years introduction of pest resistance traits progressed from a single gene to multiple stacked events and from Bt-toxin expression to expression of proteins from non-Bt sources, dsRNA and their combination, while advances in molecular biology have brought “cleaner” gene manipulation technologies. However, together with benefits any new technology also bears its risks, and there are still a range of unanswered questions and concerns about long-term impact of genetically modified crops – that with knowledge and precautionary approaches can be avoided or mitigated. Sustainability of genetically modified crops for pest control largely depends on the willingness to gain and implement such knowledge.


2021 ◽  
Author(s):  
Takuma Sakamoto ◽  
Toshinori Kozaki ◽  
Norichika Ogata

Abstract BACKGROUND: Acting against the development of resistance to antibiotics and insecticides, involving negatively correlated cross-resistance (NCR) is an alternative to use- and-discard approach. It is termed NCR that toxic chemicals interact with each other and resistance of target organisms to one chemical is sometimes associated with increased susceptibility to a second chemical when; an allele confers resistance to one toxic chemical and hyper-susceptibility to another, NCR occurs. However, only 11 toxin pairs have been revealed to cause NCR in insects. Finding novel NCRs is needed for integrated pest management. RESULTS: We analyzed permethrin, an insecticide, induced transcriptomes of cultured fat bodies of the silkworm Bombyx mori, a lepidopteran model insect. Differentially expressed gene analyses suggested Bacillus thuringiensis (Bt) toxin was an NCR toxin of permethrin. NCR to permethrin and Bt toxins in Thysanoplusia intermixta, the agricultural pest moth, was examined; the children of permethrin survivor T. intermixta had increased susceptibility to Bt toxin. CONCLUSIONS: A novel NCR toxin pair, permethrin and Bt toxin, was discovered. The screening and developmental method for negatively correlated cross-resistance toxins established in this study was effective, in vitro screening using model organisms and in vivo verification using agricultural pests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Long Wang ◽  
Xiaohui Wang ◽  
Fanqi Gao ◽  
Changning Lv ◽  
Likun Li ◽  
...  

The promotion and application of transgenic Bt crops provides an approach for the prevention and control of target lepidopteran pests and effectively relieves the environmental pressure caused by the massive usage of chemical pesticides in fields. However, studies have shown that Bt crops will face a new risk due to a decrease in exogenous toxin content under elevated carbon dioxide (CO2) concentration, thus negatively affecting the ecological sustainability of Bt crops. Arbuscular mycorrhizal fungi (AMF) are important beneficial microorganisms that can effectively improve the nutrient status of host plants and are expected to relieve the ecological risk of Bt crops under increasing CO2 due to global climate change. In this study, the Bt maize and its parental line of non-transgenic Bt maize were selected and inoculated with a species of AMF (Funneliformis caledonium, synonyms: Glomus caledonium), in order to study the secondary defensive chemicals and yield of maize, and to explore the effects of F. caledonium inoculation on the growth, development, and reproduction of the pest Mythimna separata fed on Bt maize and non-Bt maize under ambient carbon dioxide concentration (aCO2) and elevated carbon dioxide concentration (eCO2). The results showed that eCO2 increased the AM fungal colonization, maize yield, and foliar contents of jasmonic acid (JA) and salicylic acid (SA), but decreased foliar Bt toxin content and Bt gene expression in Bt maize leaves. F. caledonium inoculation increased maize yield, foliar JA, SA contents, Bt toxin contents, and Bt gene expression in Bt maize leaves, and positively improved the growth, development, reproduction, and food utilization of the M. separata fed on non-Bt maize. However, F. caledonium inoculation was unfavorable for the fitness of M. separata fed on Bt maize, and the effect was intensified when combined with eCO2. It is indicated that F. caledonium inoculation had adverse effects on the production of non-Bt maize due to the high potential risk of population occurrence of M. separata, while it was just the opposite for Bt maize. Therefore, this study confirms that the AMF can increase the yield and promote the expression levels of its endogenous (JA, SA) and exogenous (Bt toxin) secondary defense substances of Bt maize under eCO2, and finally can enhance the insect resistance capacity of Bt crops, which will help ensure the sustainable utilization and safety of Bt crops under climate change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yachao Ren ◽  
Xinglu Zhou ◽  
Yan Dong ◽  
Jun Zhang ◽  
Jinmao Wang ◽  
...  

Bacillus thuringiensis (Bt) insecticidal protein genes are important tools in efforts to develop insect resistance in poplar. In this study, the Cry1Ac and Cry3A Bt toxin genes were simultaneously transformed into the poplar variety Populus × euramericana ‘Neva’ by Agrobacterium-mediated transformation to explore the exogenous gene expression and insect resistance, and to examine the effects of Bt toxin on the growth and development of Anoplophora glabripennis larvae after feeding on the transgenic plant. Integration and expression of the transgenes were determined by molecular analyses and the insect resistance of transgenic lines was evaluated in feeding experiments. Sixteen transgenic dual Bt toxin genes Populus × euramericana ‘Neva’ lines were obtained. The dual Bt toxin genes were expressed at both the transcriptional and translational levels; however, Cry3A protein levels were much higher than those of Cry1Ac. Some of the transgenic lines exhibited high resistance to the first instar larvae of Hyphantria cunea and Micromelalopha troglodyta, and the first and second instar larvae and adults of Plagiodera versicolora. Six transgenic lines inhibited the growth and development of A. glabripennis larvae. The differences in the transcriptomes of A. glabripennis larvae fed transgenic lines or non-transgenic control by RNA-seq analyses were determined to reveal the mechanism by which Bt toxin regulates the growth and development of longicorn beetle larvae. The expression of genes related to Bt prototoxin activation, digestive enzymes, binding receptors, and detoxification and protective enzymes showed significant changes in A. glabripennis larvae fed Bt toxin, indicating that the larvae responded by regulating the expression of genes related to their growth and development. This study lay a theoretical foundation for developing resistance to A. glabripennis in poplar, and provide a foundation for exploring the mechanism of Bt toxin action on Cerambycidae insects.


Sign in / Sign up

Export Citation Format

Share Document