scholarly journals Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
So Fujiyoshi ◽  
Ai Muto-Fujita ◽  
Fumito Maruyama
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin J. Callahan ◽  
Dmitry Grinevich ◽  
Siddhartha Thakur ◽  
Michael A. Balamotis ◽  
Tuval Ben Yehezkel

Abstract Background Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge. Methods Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads. Results LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens. Conclusions The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2492 ◽  
Author(s):  
Catherine M. Burke ◽  
Aaron E. Darling

BackgroundThe bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision.ResultsWe describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection.ConclusionsThis method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution.


2003 ◽  
Vol 69 (10) ◽  
pp. 6056-6063 ◽  
Author(s):  
Anushree Malik ◽  
Masashi Sakamoto ◽  
Shohei Hanazaki ◽  
Masamitsu Osawa ◽  
Takanori Suzuki ◽  
...  

ABSTRACT Thirty-two strains of nonflocculating bacteria isolated from sewage-activated sludge were tested by a spectrophotometric assay for their ability to coaggregate with one other in two-membered systems. Among these strains, eight showed significant (74 to 99%) coaggregation with Acinetobacter johnsonii S35 while only four strains coaggregated, to a lesser extent (43 to 65%), with Acinetobacter junii S33. The extent and pattern of coaggregation as well as the aggregate size showed good correlation with cellular characteristics of the coaggregating partners. These strains were identified by sequencing of full-length 16S rRNA genes. A. johnsonii S35 could coaggregate with strains of several genera, such as Oligotropha carboxidovorans, Microbacterium esteraromaticum, and Xanthomonas spp. The role of Acinetobacter isolates as bridging organisms in multigeneric coaggregates is indicated. This investigation revealed the role of much-neglected nonflocculating bacteria in floc formation in activated sludge.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Patrick D. Schloss ◽  
Rene A. Girard ◽  
Thomas Martin ◽  
Joshua Edwards ◽  
J. Cameron Thrash

ABSTRACT A census is typically carried out for people across a range of geographical levels; however, microbial ecologists have implemented a molecular census of bacteria and archaea by sequencing their 16S rRNA genes. We assessed how well the census of full-length 16S rRNA gene sequences is proceeding in the context of recent advances in high-throughput sequencing technologies because full-length sequences are typically used as references for classification of the short sequences generated by newer technologies. Among the 1,411,234 and 53,546 full-length bacterial and archaeal sequences, 94.5% and 95.1% of the bacterial and archaeal sequences, respectively, belonged to operational taxonomic units (OTUs) that have been observed more than once. Although these metrics suggest that the census is approaching completion, 29.2% of the bacterial and 38.5% of the archaeal OTUs have been observed more than once. Thus, there is still considerable diversity to be explored. Unfortunately, the rate of new full-length sequences has been declining, and new sequences are primarily being deposited by a small number of studies. Furthermore, sequences from soil and aquatic environments, which are known to be rich in bacterial diversity, represent only 7.8 and 16.5% of the census, while sequences associated with host-associated environments represent 55.0% of the census. Continued use of traditional approaches and new technologies such as single-cell genomics and short-read assembly are likely to improve our ability to sample rare OTUs if it is possible to overcome this sampling bias. The success of ongoing efforts to use short-read sequencing to characterize archaeal and bacterial communities requires that researchers strive to expand the depth and breadth of this census. IMPORTANCE The biodiversity contained within the bacterial and archaeal domains dwarfs that of the eukaryotes, and the services these organisms provide to the biosphere are critical. Surprisingly, we have done a relatively poor job of formally tracking the quality of the biodiversity as represented in full-length 16S rRNA genes. By understanding how this census is proceeding, it is possible to suggest the best allocation of resources for advancing the census. We found that the ongoing effort has done an excellent job of sampling the most abundant organisms but struggles to sample the rarer organisms. Through the use of new sequencing technologies, we should be able to obtain full-length sequences from these rare organisms. Furthermore, we suggest that by allocating more resources to sampling environments known to have the greatest biodiversity, we will be able to make significant advances in our characterization of archaeal and bacterial diversity.


2021 ◽  
Author(s):  
Yu TaoBing ◽  
Cheng Lang ◽  
Liu Qi ◽  
Wang ShaSha ◽  
Zhou Yuan ◽  
...  

Abstract Background: Waterlogging on the global environment has led to a significant decline in crop yields. However, the response of plant-associated microbes to waterlogging stress on different soils is not known. Moreover, there are few reports on whether this response is influenced by different sequencing methods. In this study, the effects of waterlogging on soybean rhizosphere microbial structure on two types of soil were examined, using a short reading 16S rRNA sequencing variable region V4 and two full-length 16S rRNA sequencing variable regions V1-V9.Results: The results revealed some similarities and differences in three sequencing methods for soybean rhizosphere microbial response to waterlogging stress. Based on CPCoA analysis, all the sequencing methods showed that waterlogging on both types of soil significantly affected the bacterial community structure of the soybean rhizosphere, and increased the relative abundance of Geobacter. However, the full-length sequencing methods had higher classification resolution than short-read sequencing (except phylum level of all sequencing methods and class level of LoopSeq sequencing). Further, analysis on OTU level and network showed that waterlogging increased the abundance of some microorganisms related to nitrogen cycle using V4 sequencing, and microorganisms related to phosphorus cycling when using two full-length sequencing methods. This is in line with the core microbial analysis. Environmental factors affecting the structure of microbial communities differed among sequencing methods.Conclusions: In summary, this piece of work detected the effects of waterlogging on soybean rhizosphere microbes using three sequencing methods. Some functional microbes were enriched in the rhizosphere, which may benefit soybean in resisting waterlogging stress. On the other hand, there were several differences in results among the three sequencing methods which might affect the response of rhizosphere microbial structure to stress. Our analysis of sequencing methods on various levels provides some useful information on environmental samples sequencing.


Sign in / Sign up

Export Citation Format

Share Document