scholarly journals Quantifying machine influence over human forecasters

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrés Abeliuk ◽  
Daniel M. Benjamin ◽  
Fred Morstatter ◽  
Aram Galstyan

Abstract Crowdsourcing human forecasts and machine learning models each show promise in predicting future geopolitical outcomes. Crowdsourcing increases accuracy by pooling knowledge, which mitigates individual errors. On the other hand, advances in machine learning have led to machine models that increase accuracy due to their ability to parameterize and adapt to changing environments. To capitalize on the unique advantages of each method, recent efforts have shown improvements by “hybridizing” forecasts—pairing human forecasters with machine models. This study analyzes the effectiveness of such a hybrid system. In a perfect world, independent reasoning by the forecasters combined with the analytic capabilities of the machine models should complement each other to arrive at an ultimately more accurate forecast. However, well-documented biases describe how humans often mistrust and under-utilize such models in their forecasts. In this work, we present a model that can be used to estimate the trust that humans assign to a machine. We use forecasts made in the absence of machine models as prior beliefs to quantify the weights placed on the models. Our model can be used to uncover other aspects of forecasters’ decision-making processes. We find that forecasters trust the model rarely, in a pattern that suggests they treat machine models similarly to expert advisors, but only the best forecasters trust the models when they can be expected to perform well. We also find that forecasters tend to choose models that conform to their prior beliefs as opposed to anchoring on the model forecast. Our results suggest machine models can improve the judgment of a human pool but highlight the importance of accounting for trust and cognitive biases involved in the human judgment process.

Author(s):  
Marley Bacelar

Introduction Machine learning algorithms are quickly gaining traction in both the private and public sectors for their ability to automate both simple and complex decision-making processes. The vast majority of economic sectors, including transportation, retail, advertisement, and energy, are being disrupted by widespread data digitization and the emerging technologies that leverage it. Computerized systems are being introduced in government operations to improve accuracy and objectivity, and AI is having an impact on democracy and governance [1]. Numerous businesses are using machine learning to analyze massive quantities of data, from calculating credit for loan applications to scanning legal contracts for errors to analyzing employee interactions with customers to detect inappropriate behavior. New tools make it easier than ever for developers to design and deploy machine-learning algorithms [2] [3].


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document