scholarly journals Osteopontin regulates biomimetic calcium phosphate crystallization from disordered mineral layers covering apatite crystallites

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Taly Iline-Vul ◽  
Raju Nanda ◽  
Borja Mateos ◽  
Shani Hazan ◽  
Irina Matlahov ◽  
...  

Abstract Details of apatite formation and development in bone below the nanometer scale remain enigmatic. Regulation of mineralization was shown to be governed by the activity of non-collagenous proteins with many bone diseases stemming from improper activity of these proteins. Apatite crystal growth inhibition or enhancement is thought to involve direct interaction of these proteins with exposed faces of apatite crystals. However, experimental evidence of the molecular binding events that occur and that allow these proteins to exert their functions are lacking. Moreover, recent high-resolution measurements of apatite crystallites in bone have shown that individual crystallites are covered by a persistent layer of amorphous calcium phosphate. It is therefore unclear whether non-collagenous proteins can interact with the faces of the mineral crystallites directly and what are the consequences of the presence of a disordered mineral layer to their functionality. In this work, the regulatory effect of recombinant osteopontin on biomimetic apatite is shown to produce platelet-shaped apatite crystallites with disordered layers coating them. The protein is also shown to regulate the content and properties of the disordered mineral phase (and sublayers within it). Through solid-state NMR atomic carbon-phosphorous distance measurements, the protein is shown to be located in the disordered phases, reaching out to interact with the surfaces of the crystals only through very few sidechains. These observations suggest that non-phosphorylated osteopontin acts as regulator of the coating mineral layers and exerts its effect on apatite crystal growth processes mostly from afar with a limited number of contact points with the crystal.

2001 ◽  
Vol 12 (0) ◽  
pp. 39-44 ◽  
Author(s):  
TOSHIHIRO KASUGA ◽  
YOSHIMASA HOSOI ◽  
MASAYUKI NOGAMI ◽  
MITSUO NIINOMI

2012 ◽  
Vol 109 (35) ◽  
pp. 14170-14175 ◽  
Author(s):  
S. Boonrungsiman ◽  
E. Gentleman ◽  
R. Carzaniga ◽  
N. D. Evans ◽  
D. W. McComb ◽  
...  

2009 ◽  
Vol 610-613 ◽  
pp. 1391-1394
Author(s):  
Hua De Zheng ◽  
Ying Jun Wang ◽  
Qiang Ma ◽  
Cheng Yun Ning ◽  
Xiao Feng Chen

In the present study, an Intelligent Multi-parameter Simulated Evaluation in vitro (IMSE system) was used to study the deposition properties of apatite formation on the surface of biphasic calcium phosphate porous ceramic (BCP) from static and dynamic r-SBF. Results showed that apatite formed on the surface of BCP from static and dynamic r-SBF differed between each other. In static r-SBF, ions were transferred by diffusion, which could not compensate the consuming of calcium ions, and mist apatite layer was formed on the surface of samples. But in the dynamic r-SBF, simulated fluid was adjusted precisely and flowed forcedly, the concentrations of ions were homogeneous; with the compensation of ions, calcium and phosphate were supersaturated, and the free energy of apatite formation was negative, bone-like apatite sheets were formed on the surface of samples.


Biomaterials ◽  
2005 ◽  
Vol 26 (13) ◽  
pp. 1595-1603 ◽  
Author(s):  
M. Iijima ◽  
J. Moradian-Oldak

Author(s):  
Nuan La Ong Srakaew ◽  
Sirirat Tubsungnoen Rattanachan

Self-setting calcium phosphate cement (CPC) has been used in bone repair and substitution due to their excellent biocompatibility, bioactive as well as simplicity of preparation and use. The inherent brittleness and slow degradation are the major disadvantages for the use of calcium phosphate cements. To improve the degradation for the traditional CPC, the apatite cement formula incorporated with β-tricalcium phosphate (β-TCP) with varying concentration were studied and the effect of the pH value of liquid phase on the properties of this new calcium phosphate cement formula was evaluated. The apatite cements containing β-TCP for 10 and 40 wt.% were mixed into the aqueous solution with different pH values and then aging in absolute humidity at 37°C for 7 days. The setting time and phase analysis of the biphasic calcium phosphate were determined as compared to the apatite cement. For proper medical application, the compressive strength, the phase analysis and the degradation of the CPC samples at pH 7.0 and 7.4 were evaluated after soaking in the simulated body fluid (SBF) at 37°C for 7 days. The results indicated that the properties of the samples such as the setting time, the compressive strength related to the phase analysis of the set cements. The high degradation of the CPC was found in the cement with increasing β-TCP addition due to the phase after setting. Apatite formation with oriented plate-like morphology was also found to be denser on the surface of the biphasic bone cements after soaking in SBF for 7 days. The obtained results indicated that the cement containing β-TCP mixed with the liquid phase at pH 7.4 could be considered as a highly biodegradable and bioactive bone cement, as compared to the traditional CPC.


Sign in / Sign up

Export Citation Format

Share Document