scholarly journals Sulcal morphology of ventral temporal cortex is shared between humans and other hominoids

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jacob A. Miller ◽  
Willa I. Voorhies ◽  
Xiang Li ◽  
Ishana Raghuram ◽  
Nicola Palomero-Gallagher ◽  
...  

Abstract Hominoid-specific brain structures are of particular importance in understanding the evolution of human brain structure and function, as they are absent in mammals that are widely studied in the extended neuroscience field. Recent research indicates that the human fusiform gyrus (FG), which is a hominoid-specific structure critical for complex object recognition, contains a tertiary, longitudinal sulcus (mid-fusiform sulcus, MFS) that bisects the FG into lateral and medial parallel gyri. The MFS is a functional and architectonic landmark in the human brain. Here, we tested if the MFS is specific to the human FG or if the MFS is also identifiable in other hominoids. Using magnetic resonance imaging and cortical surface reconstructions in 30 chimpanzees and 30 humans, we show that the MFS is also present in chimpanzees. The MFS is relatively deeper and cortically thinner in chimpanzees compared to humans. Additional histological analyses reveal that the MFS is not only present in humans and chimpanzees, but also in bonobos, gorillas, orangutans, and gibbons. Taken together, these results reveal that the MFS is a sulcal landmark that is shared between humans and other hominoids. These results require a reconsideration of the sulcal patterning in ventral temporal cortex across hominoids, as well as revise the compensation theory of cortical folding.

CNS Spectrums ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Gerianne M. Alexander ◽  
Bradley S. Peterson

AbstractIn a variety of mammalian species, prenatal androgens organize brain structures and functions that are later activated by steroid hormones in postnatal life. In humans, studies of individuals with typical and atypical development suggest that sex differences in reproductive and nonreproductive behavior derive in part from similar prenatal and postnatal steroid effects on brain development. This paper provides a summary of research investigating hormonal influences on human behavior and describes how sex differences in the prevalences and natural histories of developmental psychopathologies may be consistent with these steroid effects. An association between patterns of sexual differentiation and specific forms of psychopathology suggests novel avenues for assessing the effects of sex steroids on brain structure and function, which may in turn improve our understanding of typical and atypical development in women and men.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2021 ◽  
Author(s):  
Omer Faruk Gulban ◽  
Saskia Bollmann ◽  
Renzo Huber ◽  
Konrad Wagstyl ◽  
Rainer Goebel ◽  
...  

Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for a comprehensive understanding of brain structure and function. However, in vivo techniques for mesoscopic imaging have been hampered by the sensitivity challenges of acquiring data at very high resolutions and the lack of analysis tools that can retain fine-scale detail while also accurately positioning measurements relative to the complex folded structure of the cerebral cortex. Here, we present an experimental dataset in which we image the anatomical structure of the visual and auditory cortices of five participants at 0.35 × 0.35 × 0.35 mm3 resolution. To analyze this challenging dataset, we design and implement two sets of novel methodology: a method for mitigating imaging artifacts related to blood motion and a suite of software tools for accurate quantification and visualization of the mesoscopic structure of the cortical surface. Applying these methods, we demonstrate the ability to clearly identify structures that are visible only at the mesoscopic scale, including cortical layers and intracortical blood vessels. We freely share our dataset and tools with the research community, thereby enabling investigations of fine-scale neurobiological structures in both the current and future datasets. Overall, our results demonstrate the viability of mesoscopic imaging as a quantitative tool for studying the living human brain.


Sign in / Sign up

Export Citation Format

Share Document