scholarly journals Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch’s membrane opening-minimum rim width and RNFL

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sat byul Seo ◽  
Hyun-kyung Cho

Abstract We aimed to classify early normal-tension glaucoma (NTG) and glaucoma suspect (GS) using Bruch’s membrane opening-minimum rim width (BMO-MRW), peripapillary retinal nerve fiber layer (RNFL), and the color classification of RNFL based on a deep-learning model. Discriminating early-stage glaucoma and GS is challenging and a deep-learning model may be helpful to clinicians. NTG accounts for an average 77% of open-angle glaucoma in Asians. BMO-MRW is a new structural parameter that has advantages in assessing neuroretinal rim tissue more accurately than conventional parameters. A dataset consisted of 229 eyes out of 277 GS and 168 eyes of 285 patients with early NTG. A deep-learning algorithm was developed to discriminate between GS and early NTG using a training set, and its accuracy was validated in the testing dataset using the area under the curve (AUC) of the receiver operating characteristic curve (ROC). The deep neural network model (DNN) achieved highest diagnostic performance, with an AUC of 0.966 (95%confidence interval 0.929–1.000) in classifying either GS or early NTG, while AUCs of 0.927–0.947 were obtained by other machine-learning models. The performance of the DNN model considering all three OCT-based parameters was the highest (AUC 0.966) compared to the combinations of just two parameters. As a single parameter, BMO-MRW (0.959) performed better than RNFL alone (0.914).

Author(s):  
Yong-Yeon Jo ◽  
Joon-myoung Kwon ◽  
Ki-Hyun Jeon ◽  
Yong-Hyeon Cho ◽  
Jae-Hyun Shin ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dapeng Lang ◽  
Deyun Chen ◽  
Ran Shi ◽  
Yongjun He

Deep learning has been widely used in the field of image classification and image recognition and achieved positive practical results. However, in recent years, a number of studies have found that the accuracy of deep learning model based on classification greatly drops when making only subtle changes to the original examples, thus realizing the attack on the deep learning model. The main methods are as follows: adjust the pixels of attack examples invisible to human eyes and induce deep learning model to make the wrong classification; by adding an adversarial patch on the detection target, guide and deceive the classification model to make it misclassification. Therefore, these methods have strong randomness and are of very limited use in practical application. Different from the previous perturbation to traffic signs, our paper proposes a method that is able to successfully hide and misclassify vehicles in complex contexts. This method takes into account the complex real scenarios and can perturb with the pictures taken by a camera and mobile phone so that the detector based on deep learning model cannot detect the vehicle or misclassification. In order to improve the robustness, the position and size of the adversarial patch are adjusted according to different detection models by introducing the attachment mechanism. Through the test of different detectors, the patch generated in the single target detection algorithm can also attack other detectors and do well in transferability. Based on the experimental part of this paper, the proposed algorithm is able to significantly lower the accuracy of the detector. Affected by the real world, such as distance, light, angles, resolution, etc., the false classification of the target is realized by reducing the confidence level and background of the target, which greatly perturbs the detection results of the target detector. In COCO Dataset 2017, it reveals that the success rate of this algorithm reaches 88.7%.


2021 ◽  
Vol 32 ◽  
pp. S926-S927
Author(s):  
G. Toyokawa ◽  
Y. Yamada ◽  
N. Haratake ◽  
Y. Shiraishi ◽  
T. Takenaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document