scholarly journals Feasibility study of portable multi-energy computed tomography with photon-counting detector for preclinical and clinical applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang-Lae Lee ◽  
Key Jo Hong ◽  
Namwoo Kim ◽  
Kwanhee Han ◽  
Dongkyu Kim ◽  
...  

AbstractIn this study, preclinical experiments were performed with an in-house developed prototypal photon-counting detector computed tomography (PCD CT) system. The performance of the system was compared with the conventional energy-integrating detector (EID)-based CT, concerning the basic image quality biomarkers and the respective capacities for material separation. The pre- and the post-contrast axial images of a canine brain captured by the PCD CT and EID CT systems were found to be visually similar. Multi-energy images were acquired using the PCD CT system, and machine learning-based material decomposition was performed to segment the white and gray matters for the first time in soft tissue segmentation. Furthermore, to accommodate clinical applications that require high resolution acquisitions, a small, native, high-resolution (HR) detector was implemented on the PCD CT system, and its performance was evaluated based on animal experiments. The HR acquisition mode improved the spatial resolution and delineation of the fine structures in the canine’s nasal turbinates compared to the standard mode. Clinical applications that rely on high-spatial resolution expectedly will also benefit from this resolution-enhancing function. The results demonstrate the potential impact on the brain tissue segmentation, improved detection of the liver tumors, and capacity to reconstruct high-resolution images both preclinically and clinically.

2018 ◽  
Vol 53 (11) ◽  
pp. 655-662 ◽  
Author(s):  
Shuai Leng ◽  
Kishore Rajendran ◽  
Hao Gong ◽  
Wei Zhou ◽  
Ahmed F. Halaweish ◽  
...  

Author(s):  
Shuai Leng ◽  
Shengzhen Tao ◽  
Kishore Rajendran ◽  
Cynthia H. McCollough

Radiographics ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 729-743 ◽  
Author(s):  
Shuai Leng ◽  
Michael Bruesewitz ◽  
Shengzhen Tao ◽  
Kishore Rajendran ◽  
Ahmed F. Halaweish ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petri Paakkari ◽  
Satu I. Inkinen ◽  
Miitu K. M. Honkanen ◽  
Mithilesh Prakash ◽  
Rubina Shaikh ◽  
...  

AbstractPhoton-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+ (targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n = 53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document