scholarly journals Magnetic structure study of the sawtooth chain antiferromagnet $$\hbox {Fe}_2\hbox {Se}_2\hbox {O}_7$$

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuhiro Nawa ◽  
Maxim Avdeev ◽  
Peter Berdonosov ◽  
Alexey Sobolev ◽  
Igor Presniakov ◽  
...  

AbstractA magnetic structure of the sawtooth-chain antiferromagnet $$\hbox {Fe}_2\hbox {Se}_2\hbox {O}_7$$ Fe 2 Se 2 O 7 was investigated by magnetization measurements, single crystalline and powder neutron diffraction experiments, and a further analysis on the Mössbauer spectra. These experiments revealed a nearly collinear antiferromagnetic structure with magnetic moments aligned along the b-axis, indicating dominant antiferromagnetic exchanges between Fe(1)–Fe(2) and Fe(2)–Fe(3) sites. The magnon dispersion relation derived from the linear spin wave approximation suggests the possible flat band nature of magnons.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Guo ◽  
M. T. Fernández-Díaz ◽  
L. Zhou ◽  
Y. Yin ◽  
Y. Long ◽  
...  

Abstract We report on the magnetic structure of CdMn7O12 determined by powder neutron diffraction. We were able to measure the magnetic structure of this Cd containing and highly neutron absorbing material by optimizing the sample geometry and by blending the CdMn7O12 with Aluminum powder. Below its Néel temperature T N1 all magnetic reflections can be indexed by a single commensurate propagation vector k = (0, 0, 1). This is different to the case of CaMn7O12 where the propagation vector is incommensurate and where an in-plane helical magnetic structure has been found. We observe a commensurate non-collinear magnetic structure in CdMn7O12 with in-plane aligned magnetic moments resembling the ones in CaMn7O12. However, the commensurate propagation vector prevents the appearance of a helical magnetic structure in CdMn7O12. Finally, we also observe a third structural phase transition below ~60 K that can be attributed to phase separation.


Author(s):  
Stanisław Baran ◽  
Aleksandra Deptuch ◽  
Bogusław Penc ◽  
Andreas Hoser ◽  
Andrzej Szytuła

The magnetic structure in Er3Cu4Sn4 has been determined using high-resolution powder neutron diffraction, supported by symmetry analysis. At low temperatures, Er3Cu4Sn4 assumes a crystal structure of the Tm3Cu4Sn4 type (in the monoclinic space group C2/m). The Er atoms occupy two distinct Wyckoff sites: 2c and 4i. It has been found that the Er magnetic moments on the 2c site form a commensurate antiferromagnetic structure (k 1 = [0, 0, ½]) below 6 K. The magnetic moments reach 8.91 (8) μB at 1.4 K and are parallel to the b axis. The Er magnetic moments on the 4i site order below 2 K and form an incommensurate antiferromagnetic sine-modulated structure (k 2 = [1, 0.4667 (1), ½]), with magnetic moments lying in the ac plane and perpendicular to the a axis. The amplitude of modulation equals 8.7 (1) μB at 1.4 K.


2004 ◽  
Vol 443-444 ◽  
pp. 379-382 ◽  
Author(s):  
M. Bacmann ◽  
Daniel Fruchart ◽  
A. Koumina ◽  
P. Wolfers

The magnetic structure of CrNiAs was determined from magnetisation and powder neutron diffraction experiments. In the 110-182 K temperature range, the compound is ferromagnetic, resulting mainly from the Cr moment of 1.25(5) μB. Below 110 K, neutron diffraction data reveals typical satellite reflections which propagation vector is 0.228 c*. A model of oscillating magnetic moments was refined from the integrated intensity of the few additional lines.


2014 ◽  
Vol 115 (8) ◽  
pp. 737-743
Author(s):  
M. A. Borich ◽  
V. V. Smagin ◽  
A. P. Tankeyev

2014 ◽  
Vol 70 (a1) ◽  
pp. C1460-C1460 ◽  
Author(s):  
Kotaro Saito ◽  
Nobuhito Inami ◽  
Yasuo Takeichi ◽  
Tetsuro Ueno ◽  
Ryoko Sagayama ◽  
...  

Rare earth intermetallic compound Sm2Fe17N3 exhibits notalble magnetic properties such as high Curie temperature and high coercivity which are very suitable for permanent magnets [1,2]. Although microscopic magnetic structure is one of the basic information for magnetic materials, there is no report about the magnetic structure of Sm2Fe17N3 for our knowledge. This is because samarium's neutron absorption cross section is huge enough to make researchers hesitate to have neutron diffraction experiments of Sm compounds. We have carried out powder neutron diffraction measurement of Sm2Fe17N3 with a straightforward solution to the problem by taking long measurement time. Synchrotron x-ray diffraction measurements with single crystal has also been done to obtain initial crystal structure parameters for magnetic structure analysis and we have succeeded to analyze the magnetic structure of Sm2Fe17N3 at room temperature. Among four Fe sites in the unit cell, while one Fe site which is the nearest neighbor of nitrogen shows smaller magnetic moment than normal iron, two Fe sites show enhancement in their magnetic moments. This phenomenon can be understood as 'cobaltization' of Fe by the adjacent nitrogen through hybridization.


1975 ◽  
Vol 31 (3) ◽  
pp. 641-646 ◽  
Author(s):  
C. Greaves ◽  
A. J. Jacobson ◽  
B. C. Tofield ◽  
B. E. F. Fender

Sign in / Sign up

Export Citation Format

Share Document