scholarly journals Author Correction: Analysis of Annual and Seasonal Precipitation Variation in the Qinba Mountain area, China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yannan Zhang ◽  
Chuan Liang
MAUSAM ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 663-672
Author(s):  
L. N. SUN ◽  
J. Y. WANG ◽  
B. ZHANG

The dry-hot valley is a special kind of degradation ecosystem region in Hengduan Mountains. Variations of seasonal precipitation have important influnces on its landscape patterns and agricultural activities. Based on the monthly and annual precipitation data from 1956 to 2006, the multi-time scales characteristics of seasonal and annual variations of precipitation in the past 50a in the Yuanmou County had been analyzed using Meyer wavelet analysis in this paper. The periodic oscillation of precipitation variation and the points of abrupt change at different time scales along the time series are discovered and the main periods of every serial are confirmed. It was showed that the periodic oscillation of 8-12a and 4-6a for the seasonal and annual precipitation variation are obvious. The time-frequency local change characteristic of Meyer wavelet analysis can demonstrate the fine structures of precipitation and the method provides a new way in analyzing climate multi-time scales characteristics and forecasting short-term climate. The localization characteristics of time -frequency for wavelet analysis can demonstrate the detailed structures of rainfall. The wavelet analysis can be an alternative approach to analyze climate multi-time scales characteristics and forecast short-term climate variations. The research on the regularity of seasonal precipitation variation in the dry-hot valley region has a great guidance meaning to the agriculture production and resilience in flood prevention.  


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Shuqi Liang ◽  
Wensheng Wang ◽  
Dan Zhang

Characteristics of annual and seasonal precipitation variation are explored in the upstream of Minjiang River (UMR), Southwestern China, spanning from 1960 to 2015. The moment of method (MOM), linear regression method, Mann–Kendall test, sequential cluster analysis, and Morlet wavelet analysis were utilized. The results clearly show the following: (1) Distribution of precipitation is uneven in space, with more in the south and less in the southeast. Decade average of annual precipitation reached the lowest in the 2000s and increased during 2010–2015 at all gauging stations and UMR. (2) Areal annual precipitation exhibited an insignificant decreasing trend with a rate of 4.47 mm/10a, which was mainly attributable to decreased summer precipitation. Spring precipitation exhibited an insignificant increasing trend and winter precipitation remained unchanged. (3) The change points mainly appeared in the 1980s and 1990s. And the almost periods of study area were generally 2–5 years, 7–11 years, and 15–20 years. (4) The increasing trend of annual precipitation is relatively obvious at higher altitudes, while the decreasing trend is more significant at low altitude stations.


2016 ◽  
Vol 69 (6) ◽  
pp. 465-473 ◽  
Author(s):  
Tucker W. Hamilton ◽  
John P. Ritten ◽  
Christopher T. Bastian ◽  
Justin D. Derner ◽  
John A. Tanaka

Sign in / Sign up

Export Citation Format

Share Document