scholarly journals The isotopic signature of the “arthropod rain” in a temperate forest

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Oksana L. Rozanova ◽  
Sergey M. Tsurikov ◽  
Marina G. Krivosheina ◽  
Andrei V. Tanasevitch ◽  
Dmitry N. Fedorenko ◽  
...  

AbstractForest canopy is densely populated by phyto-, sapro-, and microbiphages, as well as predators and parasitoids. Eventually, many of crown inhabitants fall down, forming so-called ‘arthropod rain’. Although arthropod rain can be an important food source for litter-dwelling predators and saprophages, its origin and composition remains unexplored. We measured stable isotope composition of the arthropod rain in a temperate mixed forest throughout the growing season. Invertebrates forming arthropod rain were on average depleted in 13C and 15N by 1.6‰ and 2.7‰, respectively, compared to the soil-dwelling animals. This difference can be used to detect the contribution of the arthropod rain to detrital food webs. Low average δ13C and δ15N values of the arthropod rain were primarily driven by the presence of wingless microhytophages, represented mainly by Collembola and Psocoptera, and macrophytophages, mainly aphids, caterpillars, and heteropterans. Winged arthropods were enriched in heavy isotopes relative to wingless specimens, being similar in the isotopic composition to soil-dwelling invertebrates. Moreover, there was no consistent difference in δ13C and δ15N values between saprophages and predators among winged insects, suggesting that winged insects in the arthropod rain represented a random assemblage of specimens originating in different biotopes, and are tightly linked to soil food webs.

2021 ◽  
Author(s):  
Oksana L. Rozanova ◽  
Sergey M. Tsurikov ◽  
Marina G. Krivosheina ◽  
Andrei V. Tanasevitch ◽  
Dmitry N. Fedorenko ◽  
...  

Abstract Invertebrate phyto-, sapro-, and microbophages, as well as predators and parasitoids, densely populate tree crowns. Eventually, all crown inhabitants fall from the trees and become a food source for litter-dwelling predators, scavengers, and saprophages. However, the functional significance of the arthropod rain, i.e., the flux of invertebrates falling from the crowns, remains unexplored. We collected arthropod rain in a temperate mixed forest throughout the growing season. The δ13С and δ15N values of the arthropods (730 samples in total) were compared to a large reference dataset of the isotopic composition of soil animals from temperate forests. The most numerous taxa in the arthropod rain were collembolans and mites. The most diverse orders were Diptera (18 families) and Coleoptera (29 families), which formed the major portion of the winged specimens. The total ranges of δ13С and δ15N values of individual animals forming arthropod rain reached 14‰ and 26‰, respectively. Nevertheless, invertebrates forming arthropod rain were on average depleted in 13C and 15N by 1.6‰ and 2.7‰, respectively, compared to the soil-dwelling animals. This difference can be used to detect the contribution of the arthropod rain to detrital food webs. Low average δ13С and δ15N values of the arthropod rain were primarily driven by the presence of microphytophages, represented mainly by Collembola and Psocoptera, and macrophytophages, mainly aphids, caterpillars, and heteropterans. Furthermore, wingless arthropods were depleted in heavy isotopes relative to winged specimens. Among wingless invertebrates, predators and parasitoids differed significantly in δ15N values from phytophages and microbi/saprophages. In contrast, there was no consistent difference in δ values between saprophages and predators among winged insects, all of them being similar in the isotopic composition to soil-dwelling invertebrates. This result suggests that winged insects in the arthropod rain represented a random assemblage of specimens originating in different biotopes, but most were tightly linked to soil food webs. Overall, our data suggest that invertebrates falling from the crown space and flying arthropods originating from the soil are an important channel connecting food webs in tree crowns and in the soil.


2021 ◽  
Author(s):  
Raphaël Melis ◽  
Véronique Gardien ◽  
Gweltaz Mahéo ◽  
Christophe Lécuyer ◽  
Philippe-Hervé Leloup ◽  
...  

<p>Paleoaltimetry is a powerful tool to study tectonic, climate and surface processes interactions. Indeed, stable isotope composition of meteoric water can be correlated with the elevation of reliefs. The δ18O and δD of orogenic rainfall decrease while the elevation increase. Current paleoaltimetric methods based on stable isotope, including the study of pedogenic carbonates and micas associated with fault or shear zones, represent an indirect way to obtain stable isotope « paleometeoric fluid » composition. These methods do not provide simultaneously the δ18O and δD values implying the use of isotope exchange equation, source of signficant errors (up to +/- 1000m).</p><p>We have developed a new method which allow to directly acces at both the δ18O and δD of « paleometeoric » fluids with a good precision and margin of error less than +/- 200m . This method has been developed on the stable isotope composition of fluid inclusion trapped in quartz veins. The developed experimental protocol allows to extract small quantity of fluid (~10mL) and directly analyse both the δ18O and δD with a OA-ICOS Spectroscopy. Tested on 18 Miocene alpine quartz veins from the Mont-Blanc and the Chenaillet massifs the stable isotope composition of the fluids fit very well with meteoric isotopic signature and highlight the robustness of stable isotope ratio through geological time.</p><p>More over, our results indicate that Miocene precipitation was way more positive (-4,8 to -9 ‰ for δ18O and -38,2 to 68,8‰ for δD) in the Mont-Blanc massif area than modern precipitation (-12,9 to -18 ‰ for δ18O and -101,1 to -144,25‰ for δD) which indicate that the massif was still at low elevation at this time. In contrast the « paleoprecipitation » of the Chenaillet massif fall in the same range than modern precipitation (-83 to -120,3 ‰ for δD and -11,8 to -16,9 ‰ for δ18O) which indicate this massif has already reached his present altitude (~ 2500m).</p>


2021 ◽  
Vol 5 ◽  
Author(s):  
Micha Horacek ◽  
Wolfgang Papesch

Vegetable food stuff produced under controlled and identical conditions from one farm of identical “age” (batch) has a similar isotopic composition. This fact can be used to control the origin of vegetables. This question is of special relevance when food-contaminations have to be traced back to the producer, or certain production claims have to be controlled. However, as vegetables are harvested, brought to whole-sale merchants and to retail shops, where they remain until being bought by the consumer, one has to consider possible changes in isotopic composition during this transfer period, when comparing vegetables of questioned origin with reference samples taken directly from the field/producer. We investigated changes in the isotope composition of vegetables during storage by studying as an example cucumbers from one batch. We stored the cucumbers in a vegetable storage under controlled conditions and removed one sample every day and analyzed its isotopic composition. We found changes in the δ15N and δ18O isotope values over the investigated period of 21 days, with both parameters showing positive linear correlations, and maximum enrichments with time of more than 1.5‰ for δ15N and more than 2‰ for δ18O. However, within the interval the samples remained in a saleable condition the isotope variations remained more or less within the variability of the sample batch. Our study demonstrates that changes in the isotopic signature in vegetables might occur after harvest during storage and have to be taken into account when (commercial) samples collected in a market are investigated.


Sign in / Sign up

Export Citation Format

Share Document