soil food webs
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Anton M. Potapov ◽  
Xin Sun ◽  
Maria J.I. Briones ◽  
George Brown ◽  
Erin Cameron ◽  
...  

Here we introduce the Soil BON Foodweb Team, a cross-continental collaborative network that aims to monitor soil animal communities and food webs using consistent methodology at a global scale. Soil animals support vital soil processes via soil structure modification, direct consumption of dead organic matter, and interactions with microbial and plant communities. Soil animal effects on ecosystem functions have been demonstrated by correlative analyses as well as in laboratory and field experiments, but these studies typically focus on selected animal groups or species at one or few sites with limited variation in environmental conditions. The lack of comprehensive harmonised large-scale soil animal community data including microfauna, mesofauna, and macrofauna, in conjunction with related soil functions, limits our understanding of biological interactions in soil communities and how these interactions affect ecosystem functioning. To provide such data, the Soil BON Foodweb Team invites researchers worldwide to use a common methodology to address six long-term goals: (1) to collect globally representative harmonised data on soil micro-, meso-, and macrofauna communities; (2) to describe key environmental drivers of soil animal communities and food webs; (3) to assess the efficiency of conservation approaches for the protection of soil animal communities; (4) to describe soil food webs and their association with soil functioning globally; (5) to establish a global research network for soil biodiversity monitoring and collaborative projects in related topics; (6) to reinforce local collaboration networks and expertise and support capacity building for soil animal research around the world. In this paper, we describe the vision of the global research network and the common sampling protocol to assess soil animal communities and advocate for the use of standard methodologies across observational and experimental soil animal studies. We will use this protocol to conduct soil animal assessments and reconstruct soil food webs on the sites included in the global soil biodiversity monitoring network, Soil BON, allowing us to assess linkages among soil biodiversity, vegetation, soil physico-chemical properties, and ecosystem functions. In the present paper, we call for researchers especially from countries and ecoregions that remain underrepresented in the majority of soil biodiversity assessments to join us. Together we will be able to provide science-based evidence to support soil biodiversity conservation and functioning of terrestrial ecosystems.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Oksana L. Rozanova ◽  
Sergey M. Tsurikov ◽  
Marina G. Krivosheina ◽  
Andrei V. Tanasevitch ◽  
Dmitry N. Fedorenko ◽  
...  

AbstractForest canopy is densely populated by phyto-, sapro-, and microbiphages, as well as predators and parasitoids. Eventually, many of crown inhabitants fall down, forming so-called ‘arthropod rain’. Although arthropod rain can be an important food source for litter-dwelling predators and saprophages, its origin and composition remains unexplored. We measured stable isotope composition of the arthropod rain in a temperate mixed forest throughout the growing season. Invertebrates forming arthropod rain were on average depleted in 13C and 15N by 1.6‰ and 2.7‰, respectively, compared to the soil-dwelling animals. This difference can be used to detect the contribution of the arthropod rain to detrital food webs. Low average δ13C and δ15N values of the arthropod rain were primarily driven by the presence of wingless microhytophages, represented mainly by Collembola and Psocoptera, and macrophytophages, mainly aphids, caterpillars, and heteropterans. Winged arthropods were enriched in heavy isotopes relative to wingless specimens, being similar in the isotopic composition to soil-dwelling invertebrates. Moreover, there was no consistent difference in δ13C and δ15N values between saprophages and predators among winged insects, suggesting that winged insects in the arthropod rain represented a random assemblage of specimens originating in different biotopes, and are tightly linked to soil food webs.


2021 ◽  
Author(s):  
Francisco Castro ◽  
Sina M. Adl ◽  
Stefano Allesina ◽  
Richard D. Bardgett ◽  
Thomas Bolger ◽  
...  

Author(s):  
Maarten Schrama ◽  
Casper Quist ◽  
Arjen De Groot ◽  
Ellen Cieraad ◽  
deborah ashworth ◽  
...  

There is widespread concern that cessation of grazing in historically grazed ecosystems is causing biotic homogenization and biodiversity loss. Here, we used 12 montane grassland sites along an 800-km north-south gradient across the United Kingdom, to test whether cessation of grazing affects local ɑ- and β-diversity of belowground food webs. We show that cessation of grazing leads to strongly decreased ɑ-diversity of both soil microbial and faunal diversity. In contrast, the β-diversity varied between groups of soil organisms. While soil microbial communities exhibited increased homogenization after cessation of grazing, we observed decreased homogenization for soil fauna after cessation of grazing. Overall, our results indicate that grazer exclusion from historically grazed montane grasslands has far-ranging consequences for the diversity and composition of belowground food webs, and underscore the importance of grazers for maintaining the diversity of belowground communities, which play a central role in ecosystem functioning.


2021 ◽  
Vol 17 (9) ◽  
pp. 20210353
Author(s):  
Saori Fujii ◽  
Takashi F. Haraguchi ◽  
Ichiro Tayasu

Terrestrial carbon cycling is largely mediated by soil food webs. Identifying the carbon source for soil animals has been desired to distinguish their roles in carbon cycling, but it is challenging for small invertebrates at low trophic levels because of methodological limitations. Here, we combined radiocarbon ( 14 C) analysis with stable isotope analyses ( 13 C and 15 N) to understand feeding habits of soil microarthropods, especially focusing on springtail (Collembola). Most Collembola species exhibited lower Δ 14 C values than litter regardless of their δ 13 C and δ 15 N signatures, indicating their dependence on young carbon. In contrast with general patterns across all taxonomic groups, we found a significant negative correlation between δ 15 N and Δ 14 C values among the edaphic Collembola. This means that the species with higher δ 15 N values depend on C from more recent photosynthate, which suggests that soil-dwelling species generally feed on mycorrhizae to obtain root-derived C. Many predatory taxa exhibited higher Δ 14 C values than Collembola but lower than litter, indicating non-negligible effects of collembolan feeding habits on the soil food web. Our study demonstrated the usefulness of radiocarbon analysis, which can untangle the confounding factors that change collembolan δ 15 N values, clarify animal feeding habits and define the roles of organisms in soil food webs.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1745
Author(s):  
Amanda K. Hodson ◽  
Jordan M. Sayre ◽  
Maria C.C.P. Lyra ◽  
Jorge L. Mazza Rodrigues

Composting is an effective strategy to process agricultural and urban waste into forms that may be beneficial to crops. The objectives of this orchard field study were to characterize how a dairy manure compost and a food waste compost influenced: (1) soil nitrogen and carbon pools, (2) bacterial and nematode soil food webs and (3) tree growth and leaf N. The effects of composts were compared with fertilized and unfertilized control plots over two years in a newly planted almond orchard. Both dairy manure compost and food waste compost increased soil organic matter pools, as well as soil nitrate and ammonium at certain time points. Both composts also distinctly altered bacterial communities after application, specifically those groups with carbon degrading potential, and increased populations of bacterial feeding nematodes, although in different timeframes. Unique correlations were observed between nematode and bacterial groups within compost treatments that were not present in controls. Food waste compost increased trunk diameters compared to controls and had greater relative abundance of herbivorous root tip feeding nematodes. Results suggest that recycled waste composts contribute to biologically based nitrogen cycling and can increase tree growth, mainly within the first year after application.


2021 ◽  
Author(s):  
Oksana L. Rozanova ◽  
Sergey M. Tsurikov ◽  
Marina G. Krivosheina ◽  
Andrei V. Tanasevitch ◽  
Dmitry N. Fedorenko ◽  
...  

Abstract Invertebrate phyto-, sapro-, and microbophages, as well as predators and parasitoids, densely populate tree crowns. Eventually, all crown inhabitants fall from the trees and become a food source for litter-dwelling predators, scavengers, and saprophages. However, the functional significance of the arthropod rain, i.e., the flux of invertebrates falling from the crowns, remains unexplored. We collected arthropod rain in a temperate mixed forest throughout the growing season. The δ13С and δ15N values of the arthropods (730 samples in total) were compared to a large reference dataset of the isotopic composition of soil animals from temperate forests. The most numerous taxa in the arthropod rain were collembolans and mites. The most diverse orders were Diptera (18 families) and Coleoptera (29 families), which formed the major portion of the winged specimens. The total ranges of δ13С and δ15N values of individual animals forming arthropod rain reached 14‰ and 26‰, respectively. Nevertheless, invertebrates forming arthropod rain were on average depleted in 13C and 15N by 1.6‰ and 2.7‰, respectively, compared to the soil-dwelling animals. This difference can be used to detect the contribution of the arthropod rain to detrital food webs. Low average δ13С and δ15N values of the arthropod rain were primarily driven by the presence of microphytophages, represented mainly by Collembola and Psocoptera, and macrophytophages, mainly aphids, caterpillars, and heteropterans. Furthermore, wingless arthropods were depleted in heavy isotopes relative to winged specimens. Among wingless invertebrates, predators and parasitoids differed significantly in δ15N values from phytophages and microbi/saprophages. In contrast, there was no consistent difference in δ values between saprophages and predators among winged insects, all of them being similar in the isotopic composition to soil-dwelling invertebrates. This result suggests that winged insects in the arthropod rain represented a random assemblage of specimens originating in different biotopes, but most were tightly linked to soil food webs. Overall, our data suggest that invertebrates falling from the crown space and flying arthropods originating from the soil are an important channel connecting food webs in tree crowns and in the soil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Calderón-Sanou ◽  
Tamara Münkemüller ◽  
Lucie Zinger ◽  
Heidy Schimann ◽  
Nigel Gilles Yoccoz ◽  
...  

AbstractThe increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.


2021 ◽  
Vol 9 (8) ◽  
pp. 1555
Author(s):  
Andrew R. Thompson ◽  
Andrea J. Roth-Monzón ◽  
Zachary T. Aanderud ◽  
Byron J. Adams

The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches.


Sign in / Sign up

Export Citation Format

Share Document