scholarly journals Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast imaging

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Li ◽  
Luke Helpard ◽  
Jonas Ekeroot ◽  
Seyed Alireza Rohani ◽  
Ning Zhu ◽  
...  

AbstractThe human cochlea transforms sound waves into electrical signals in the acoustic nerve fibers with high acuity. This transformation occurs via vibrating anisotropic membranes (basilar and tectorial membranes) and frequency-specific hair cell receptors. Frequency-positions can be mapped within the cochlea to create a tonotopic chart which fits an almost-exponential function with lowest frequencies positioned apically and highest frequencies positioned at the cochlear base (Bekesy 1960, Greenwood 1961). To date, models of frequency positions have been based on a two-dimensional analysis with inaccurate representations of the cochlear hook region. In the present study, the first three-dimensional frequency analysis of the cochlea using dendritic mapping to obtain accurate tonotopic maps of the human basilar membrane/organ of Corti and the spiral ganglion was performed. A novel imaging technique, synchrotron radiation phase-contrast imaging, was used and a spiral ganglion frequency function was estimated by nonlinear least squares fitting a Greenwood-like function (F = A (10ax − K)) to the data. The three-dimensional tonotopic data presented herein has large implications for validating electrode position and creating customized frequency maps for cochlear implant recipients.

2016 ◽  
Vol 265 (3) ◽  
pp. 349-357 ◽  
Author(s):  
M. ELFARNAWANY ◽  
S. RIYAHI ALAM ◽  
S.A. ROHANI ◽  
N. ZHU ◽  
S.K. AGRAWAL ◽  
...  

2018 ◽  
Vol 9 (8) ◽  
pp. 3757 ◽  
Author(s):  
Janani S. Iyer ◽  
Ning Zhu ◽  
Sergei Gasilov ◽  
Hanif M. Ladak ◽  
Sumit K. Agrawal ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueshuang Mei ◽  
Rudolf Glueckert ◽  
Annelies Schrott-Fischer ◽  
Hao Li ◽  
Hanif M. Ladak ◽  
...  

AbstractHuman spiral ganglion (HSG) cell bodies located in the bony cochlea depend on a rich vascular supply to maintain excitability. These neurons are targeted by cochlear implantation (CI) to treat deafness, and their viability is critical to ensure successful clinical outcomes. The blood supply of the HSG is difficult to study due to its helical structure and encasement in hard bone. The objective of this study was to present the first three-dimensional (3D) reconstruction and analysis of the HSG blood supply using synchrotron radiation phase-contrast imaging (SR-PCI) in combination with histological analyses of archival human cochlear sections. Twenty-six human temporal bones underwent SR-PCI. Data were processed using volume-rendering software, and a representative three-dimensional (3D) model was created to allow visualization of the vascular anatomy. Histologic analysis was used to verify the segmentations. Results revealed that the HSG is supplied by radial vascular twigs which are separate from the rest of the inner ear and encased in bone. Unlike with most organs, the arteries and veins in the human cochlea do not follow the same conduits. There is a dual venous outflow and a modiolar arterial supply. This organization may explain why the HSG may endure even in cases of advanced cochlear pathology.


2017 ◽  
Vol 354 ◽  
pp. 1-8 ◽  
Author(s):  
Mai Elfarnawany ◽  
Seyed Alireza Rohani ◽  
Soroush Ghomashchi ◽  
Daniel G. Allen ◽  
Ning Zhu ◽  
...  

2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shizhen Yuan ◽  
Tian-tian Wang ◽  
...  

Abstract Objectives This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using X-ray in-line phase-contrast imaging (XILPCI). The aim of the study was to demonstrate that XILPCI is a micron imaging method for gastric structures. Methods The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution. Results The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastroduodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future. Keywords: Synchrotron radiation phase-contrast imaging, 3-dimensional gastric structure images


Sign in / Sign up

Export Citation Format

Share Document